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Introduction

Opioids are now one of the most common causes of accidental death in the US.
According to the CDC, two out of three drug overdose deaths in 2018 involved an opioid
[11], so opioid abuse can not only affect people physically and mentally but can also
deprive their lives [1]. Opioid addiction has a unique background in that a large reason for

why people become addicted is that patients in hospitals are often prescribed opioids to



treat pain, however these patients wind up misusing their prescriptions and become
addicted. [12]

The growing severity of opioid abuse impacted us as we learned more about it, and
because of this, our group wants to address the burden of drug abuse and provide new
therapeutic targets for human substance abuse. We'd like to explore the effects of opioids
(including codeine, fentanyl, heroin, hydrocodone, methadone, morphine, and oxycodone)
and see how gene expression differs in those who abuse opioids. We do this by identifying
specific gene expression differences between the control group and opioid abusers on
postmortem ventral midbrain. To do so, we first obtained our data from the NCBI
Sequence Read Archive [9] under the accession number: PRJNA492904. The dataset
contains 29 of opioid abusers and 20 of control (total of 49 individuals). After obtaining the
dataset, we converted the format of the data from an SRA dump to a FASTQ format, which
is an accessible raw sequencing file format [3]. With this FASTQ format, we processed the
data using FastQC [4] for data quality control . Next, we applied cutadapt [5] to trim the
adapter sequences from the reads . After the RNA sequences were trimmed, we used
kallisto [6] to align our sequences and get gene expression counts. With the gene
expression count, we filtered the data for quality reads, combined the gene counts
together, and used that data as input to perform DESeq2 [7] analysis. In addition to
DESeq2, we utilized other methods such as the weighted correlation network analysis
(WGCNA) [8], which can be used to build a co-expression network in an attempt to discover

modules of highly correlated genes related with opioid abuse [1].

Ideally, we want to present genome-wide changes in midbrain gene expression
associated with human opioids abuse. This way, we could find the midbrain gene
expression difference between opioid users and control groups. Also, we want to identify
drug-responsive modules associated with responses with opioids abuse. Hopefully, the
opioid-regulated genes identified in this project might provide new therapeutic targets and
implicate important biomarkers for human substance abuse [1]. The project output will be

a report/paper with the findings and figures we've made from our analysis.



Methods

Quality Control and Data Cleaning

Fast-qc

To start off, we ran ten of our raw data files through Fastqc[4]. The raw data is made
of base pair nucleotides (ATCGU). The inputs for Fastqc are a sample of the data that we'd
like to get measurements of and an output path to direct where to put the files generated
by running Fastqc. The html file visualizes statistics which give us information on the quality
of our reads. Those statistics include information such as the total number of sequences
processed and the length of the shortest and longest sequence in the set. Fastqc also
reports information on the per base sequence quality, per sequence quality scores, per
base sequence content, per base GC content, per sequence GC content, per base N
content, sequence length distribution, sequence duplication levels, and overrepresented
sequences. We used the generated “summary.txt” file to give us an indication of the overall
quality of the sample and whether or not we should keep it to incorporate into analysis.
The “summary.txt” file gives a general ‘pass’ or ‘fail' for each file which lets us know if it is

normal (meaning ‘random and diverse’).

Cutadapt

The main reason for running Fastqc on our samples is to determine whether or not
we would have to perform adapter trimming on our data. If there is adapter content, then
we would remove the adapter sequences contained in the data with a library such as
cutadapt[5]. Adapter sequences tell us where the gene is about to start and points to
where it would start transcription of that gene. Adapter sequences are only needed within
the cell to point to where to start transcription for genes. Therefore, it can be removed
since it does not tell us any genetic information and is only a flag for where the sequencing

read from the sample starts.

Kallisto
Next we used Kallisto[6] to perform pseudo-alignment on our samples. Kallisto
aligns the reads against a reference transcriptome and counts how many times those reads

appear, giving us those counts for each gene. The input for Kallisto includes a reference



index, the number of bootstraps we'd like to perform and the sample. We first had to
create the kallisto index, using the reference transcriptome GRCh38 [10]. Once the index is
built, it is used to align reads (similar to using a reference genome to compare reads
against) and provide gene counts for all our samples. We decided to set the number of
bootstraps to the default one hundred as is standard and lastly, we used the --pseudobam
flag to get bam files output from Kallisto as well as the following. When running all the data
through, we use both read files (the .1 and .2 files since it is paired-end reads) as input and
for each sample we get an output directory that gives us three files: run_info.json,
abundance.tsv, and abundance.h5. The run_info.json file gives us details such as the
quantification, number of bootstraps, and program version. The abundance.tsv gives the
results of the quantification (gene counts). However, the main output file of importance is
the pseudoalignment.bam file which gives us the alignment sequence information. The h5
files give the quantifications with the bootstraps. Once we finished running Kallisto on all

the data and received all the output files, we performed some data cleaning and filtering.
Samtools

We first used Samtools[15] to drop PCR duplicates from the bam files output from
kallisto, so that amplified gene counts wouldn't be overrepresented and skew our results.
Next, we sorted the bam files based on gene name so that the bam files would be ready to
be used in the HT-seq step of our analysis. Lastly, we removed multi-mapped reads with

value g=10.
GTF File Filtering and HT-Seq

HTSeq[14] is used to assemble the read counts of the genes. HTSeq requires a gene
annotation file and the aligned bam file. We used the Ensembl gene-level annotations from
Gencode release 24 (GRCh38.p5)[13] as the annotation file. Before continuing with HTSeq,
we filtered the annotation GTF file for only "gene" type, and also removed rows that were
from chromosome M (mitochondrial DNA). Lastly, we removed genes that had less than 1
reads. We then proceeded with acquiring the read counts per gene for each bam file using
HTSeq and merged all the files together at the end to create a holistic gene count csv to be

used in the next differential gene expression analysis.



Differential Gene Expression Analysis

DESeq2

DESeq2[7] requires a gene counts matrix of all the samples, the SRA run table which
links the samples to other values such as the patients age, sex, race, brain pH, RIN, cause of
death, whether or not they used cocaine, and what drugs were in their system when
experimental group overdosed, and lastly a design parameter which specifies to return the
fold change of the results from whether or not the subject used opioids. We made a
DESegDataSet object, using brainpH, RIN, and age as covariates and then filter to keep only
the counts that are greater than 10. We then use that output to create a volcano plot. The
volcano plot shows us how many genes are up-regulated and down-regulated in
comparison to the control which can give us an idea of to what extent the expression of
genes differ if you use opioids. We also conducted principal component analysis (PCA) in
order to get an idea of how much the experimental group varies in comparison to the

control as well. We use the same DESeqDataSet object to this as well.
WGCNA

Taking advantage of the R WGCNA [8] package, we are able to divide the genes
based on the topological overlap matrix dissimilarity. Topological overlapping matrix of
dissimilarity is calculated based on the adjacency matrix between the genes. It's an n by n
matrix signifying the weighted correlation between the genes. Basically this matrix
measures how similar different genes are after the principal component analysis
conducted in DESeqg2. Therefore, in each color module, similar genes are grouped together
based on their quantification and are represented by different colors in the bottom of the
graph. Using this clustering, we are able to show the correlation between the color modules

and the up- or down-regulation with opioid abuse.



Results

Exploratory Data Analysis

SRA Run Table

First and foremost, we did an exploratory data analysis on our SRA run table that is
associated with the samples, so that we can get to know the general trends and
information that our data contains. First we looked at the differences in means for the
quantitative values in our data for the experimental group versus the control. In doing this,
we compared the values for age, brain pH, and RIN by using a box plot. We also looked at
the difference in means for just the experimental group to see if cocaine use was a
confounding variable. Below in Figure 1, you can see some of our findings, and

supplementary figures in the Appendix.
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data, shows that there is not a significant difference in values for age, brain pH, or RIN between the control group and experimental group.

Raw Data

Next, after running a subset of our data through Fast-qc, and evaluating the
pass/fail values we received, we found that there was no trace of adapter content, example
shown in Figure 2 below. This means that we don't have to use cutadapt to trim the

adapter sequences in the data in order to be ready for the alignment process with kallisto.
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Figure . Fastqc results in adapter content of one of the files that were run in order to assess the quality of our reads. This visualization
shows that the sample being analyzed did not contain any adapter content. This means that it would be unnecessary to perform adapter
trimming on this sample in order to prepare the data for alignment.

Kallisto Counts

Once alignment was finished and we merged the counts that kallisto output for each
sample, into one csv, we performed a simple eda on the values in order to check the validity of
our data. We performed a t-test on the data for the experimental group versus the control
group, then calculated the log-fold change. We also wanted to see the relative abundance of
specific types of genes after running alignment on our samples. We did this by taking the first
two letters of the genes name representation and finding out what they stood for. We then

made the pie chart out of the counts of those values. (Figure 3)
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Figure 3. Different types of genes observed overall after aligning samples with kallisto.




Differential Gene Expression Analysis

DESeq-2

We created a volcano plot, using Enhanced Volcano [16], to help visualize the data
from DESeq-2. The volcano plot can show us relatively how many genes are either
upregulated or downregulated, with the y-axis telling us how significant those differences
are (negative log 10 p-value). We have 16 up-regulated genes and 28 down regulated

genes. (Figure 4)
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Figure 4 Volcano plot of genes reveals upregulation and downregulation of genes.



Next, we performed PCA in order to see the heterogeneity of subjects between the
control and experimental groups. The first principal component explained 36% of the
variation and the second explained 20% of the variation. From this, we can see that patients

who abused drugs have a larger variance compared to those who did not (control patients).

(Figure 5)
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Figure 7. Results of principal component analysis (PCA) done on patients. Principal component 1 on the x-axis and principal component
2 on the y-axis.

WGCNA
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Results of Weighted Gene Correlation Analysis (WGCNA) cluster dendrogram done on expression of genes in the experimental
group versus expression of genes in the control group.

Discussion

We believe that there may have been some preprocessing steps that did not run as
we expected. Our lack of knowledge in this particular field left us a bit unsure of what else
we could possibly do to better clean our data and we feel that this may have skewed the
results of our analysis. We had some trouble downsizing our data after getting the counts
of HT-Seq, even after filtering for only “gene” type and excluding those that were on

chromosome M.

When it comes to the dendrogram result of WGCNA we believe that it was also
affected by the variance of genes we decided to use since we restricted it to only protein
coding genes. Without that variability, we believe that is why we were only able to see 10

groups of genes output by WGCNA.
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The data used in this experiment was very limited. It focused on all males and had
no female representation. Oftentimes results can be much different for females and gene
expression differences may appear to be different. Therefore, we should consider that this
analysis should not be seen as widely applicable to all opioid users. Furthermore, the
patients that the samples were collected from were predominantly black, making up 72% of
the population. Here arises another issue in that different races and regions around the
world can respond much differently than others, therefore, perhaps doing race-specific
among multiple races might be a better idea. Another future problem we could look into is
seeing whether or not age makes a difference in gene expression. By using a wider range of
age in patients, we could analyze whether or not age could possibly be a confounding

variable in gene expression.
Conclusion

In our study, we found 28 significantly down-regulated genes and 16 significantly
up-regulated genes. We also identified specific gene networks which grouped genes similar
in expression together. This gave us insight into what kinds of genes are most affected by
opioid drug abuse. We also learned that people who use opioids have greater gene
expression variability than those who do not use them. Finding specific genes such as MME
and SPDYE6 that were most downregulated and upregulated, can help us think about new

genes to use as therapeutic targets to fight opioid addiction.
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Appendix

SRA table exploratory data analysis visualizations

1) Mean values for age, brain pH, and RIN for two subgroups in the experimental group-
opioid users who used cocaine and those that did not. 2) Difference of means between
opioid users who used cocaine and opioid users who did not use cocaine. 3) Scatterplot
matrix of experimental group data to see any correlation within quantitative values. 4) Pie
chart of the percentage of each drug found in our experimental group as a whole. 5) Pie
chart of the percentage of representation we have in all of our data (control and
experimental). 6) Small subset of data after being transformed by one hot encoding

“Opioids” column to get counts of specific drugs and find correlations.
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4. Distribution of the kinds of drugs found in all people in the experimental group

He

**Co - codeine, Fe - fentanyl, He - heroin, Hy - hydrocodone, Me - methadone, Mo - morphine, Ox - oxycodone

5. Percentage of Race Representation in the control group and experimental group.

** B - Black, W - White
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Cause of Death Age Race Sex BrainpH RIN Cocaine Group Co Fe He Hy Me Mo Ox

SRR Number

SRR7949805 Drug abuse 57 B M 6.47 7.23 1 Experimental 0 0 0O O 0 1 0
SRR7949802 Drug abuse 59 w M 6.43 6.70 0 Experimental i 0 0 O 0 1 0
SRR7949803 Drug abuse 59 B M 6.35 6.90 0 Experimental 1 0 0 O 0 1 0
SRR7949812 Drug abuse 60 B M 6.64 6.90 1 Experimental i 0 0 O 0 1 0
SRR7949813 Drug abuse 61 B M 6.26 7.00 1 Experimental 0o 1 0 0 0 1 0

Kallisto Output EDA

1) Is a histogram of the frequency of the log2 fold change values that came from the t-test
performed between the control and experimental data. 2) Tells us the frequency of p-value

from the t-test.
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