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Background
This study aims to find gene expression similarities and differences between patients of Alzheimer's (AD) and
Parkinson's (PD). The study uses sequencing data from microRNA (miRNA) found in two of the body's biofluids:
cerebrospinal fluid (CSF) and blood serum (SER). Although these disorders are experienced by many people,
little is known about what specifically causes the two diseases and how to prevent or cure them. The difficulty in
finding these solutions arises from the complexity of the "pathomechanisms" underlying the diseases, as well as
their tendencies to have early stages that are asymptomatic, making detection very challenging until symptoms
set in .

With our analysis, we aim to study the genetic causes underlying the two diseases by inspecting the sequencing
data found in patients' bodies in the form of miRNA sequences. Uncovering the genetics behind the diseases
can help researchers better their understanding of the development of AD and PD in humans and improve their
chances of finding efficient preventative measures for the two disorders. Furthermore, the similarities that we
may find between the disorders can aid in the research of neural disorders in general, and contribute to early
diagnosis, prevention, and cures.

Psychiatric Disorders

Alzheimer's
Alzheimer's disease is a progressive brain disorder that heavily impacts brain function in that it slowly
deteriorates memory and thinking skills, leading to symptoms like forgetting recent events or conversations, to
eventually losing the ability to carry out simple tasks or even recognize friends and family members. Difficulty in
reasoning and thinking is also a common symptom, especially with abstract concepts like numbers, again
making everyday tasks like paying bills challenging. AD also impairs people's abilities to make decisions in
everyday situations, like driving. The principal risk factor of Alzheimer's is age; people become more likely to
develop AD as they grow older. Family history can also increase a person's chances of developing the disease.
A genetic link to increased chance of AD shows in the form of a variation of the gene APOE e4, something we
will definitely explore further in our study. As of now, there is no known cure for AD, but medications have been
known to improve or slow the effect of the disease, and programs and caregivers help to support AD patients .

Parkinson's
Parkinson's disease is a progress nervous system disorder that impacts movement. There are a myriad of
symptoms that constitute PD, including a tremor (trembling) in a limb like a hand or fingers, slowed movement,
rigid muscles, and impaired posture and balance. PD is also sometimes accompanies by other complications,
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like cognitive issues (trouble thinking, dementia), emotional changes (like depression), swallowing, chewing, and
eating problems, among others. The principal risk factor of PD is age; PD usually develops in people age 60 or
older. Other risk factors include family history and sex (men are more likely to develop it than women). As of
now, there are no known cures or even prevention methods for Parkinson's. However, there are medications that
can ease the symptoms, as well as surgeries that can regulate parts of the brain to improve symptoms .

miRNA
Our sequence data comes from the encodings of microRNA strands. microRNA (miRNA) are a class of non-
coding RNAs that regulate gene expression. Specifically, they bind to specific mRNA and prevent those target
mRNA from translating the necessary directions to produce certain proteins. Because of the behavior of miRNA,
it will be worthwhile to explore which miRNA are binding to which mRNA, and subsequently what proteins are
being down-regulated (lowly expressed). These proteins could then be contributing factors to the symptoms
and/or development of the two diseases .

CSF/SER
The miRNA in our study was sourced from two locations (specifically, fluids found in our body): cerebrospinal
fluid (CSF) and blood serum (SER). These two fluids are part of the central nervous system, which are highly
impacted by both PD and AD. CSF cushions the brain and is a "shock absorber" for the central nervous system,
and also removes waste products from the brain . miRNAs can be found in the CSF and have been found to be
instrumental in responding to malignant tumors in the nervous system . Blood serum (or serum) is the fluid that
blood cells move through, but without the plasma - it is the clear liquid that remains after blood clots . miRNA
is found in serum as "secreted miRNAs", meaning miRNA that has been excreted from cells or tissues .

Pipeline
For this project, the basic overview of our pipeline is that we want to access our data, preform necessary quality
checks (qc), then merge the inputs into a gene_matrix and feature table, normalize by outputting normalized
counts, return the LRT (Likelihood Ratio Test measures how well the model fits ) plots in the analysis step, and
then finally visualize.

The overall pipeline is shown in Figure 1 below.
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Figure 1: Overview of Targets in Pipeline



Given the restricted access to the raw dataset, we contacted Professor Kendall Jensen, author of the original
paper, who showed us the exRNA Atlas, a data repository of the Extracellular RNA Communication Consortium
(https://exrna-atlas.org/ (https://exrna-atlas.org/)) which includes small RNA sequencing and qPCR-derived
exRNA profiles from human and mouse biofluids. The study's processed dataset was included in this repository
including the gene count matrix files for each sample.

The features table is generated from three different sources:

SRA_RunTable.csv: NCBI's SRA Run table that held the age and SRA Run attributes
Table_S1.csv: The attributes table from the research paper that held many other attributes such as expired
age, PMI, plaque density, Braak Score.
exRNA_Atlas_CORE_Results.csv: Atlas core table that held information about the condition and biofluid

These tables were all merged in the data step using Pandas merge feature, shown in Figure 2 below.

The "qc" target as show in Figure 3 is an optional step that can be used on the source fastq and bam files to
generate quality reports using FastQC and Picard. This step was not leveraged as the dataset did not have fastq
files but did already have the FastQC quality reports that we were able to analyze.

Figure 2: Data Target Implementation

https://exrna-atlas.org/


The next step is to execute the "merge" step: which takes all the gene count SRA files and merges them in one
gene matrix table using Pandas . The output will also be a gene experiments table which identifies the sample
labels and the patient features (age, disorder etc) shown in Figure 4 below.
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After merging, we execute the "normalize" step: this imports the merged gene count matrix into a custom R
script which uses the DESeq2  module to generate two normalized matrix counts: one uses standard
normalization and the other Variable Stabilization Transformation shown in Figure 5 below.
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Figure 3: Quality Control Target Implementation

Figure 4: Merge Target Implementation



After normalizing we execute the "analysis" step: this generates 4 Likelihood Ratio test (LRT), a hypothesis test
that compares models in terms of how they fit the available data by comparing the likelihood scores of the
models . Each of the 4 LRT's corresponds to one biofluid and one disorder. The LRT will be compared against
that disorder versus the control group. Additionally, a MA Plot and Heatmap are generated. This is shown in
Figure 6 below.
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The final step in this pipeline process is the "visualize" step. This generates the many charts and visualizations
we have implemented to show the results of our findings. This step takes in the VST Norm Counts as well as the
LRT MA-plot and Heatmap that are automatically generated and outputs all of our visualizations, shown in
Figure 7 below.

Figure 5: Normalize Target Implementation

Figure 6: Analysis Target Implementation



Finally, Figure 8 shows the entire pipeline from start to finish. The condition column was either Parkinson's,
Alzheimer's or a healthy patient. The biofluid column holds the source of where the miRNA samples were taken
from, either serum or the cerebrospinal fluid.

Figure 7: Visualize Target Implementation

Figure 8: Pipeline Details



Quality Checks

Cutadapt
Cutadapt  is a tool that is used by geneticists to perform data cleaning on sequence data. When sequence
libraries are prepared, the process adds adapter sequences called "primers" to the actual miRNA sequences.
However, those types of sequences are not relevant to our analysis, and can actually negatively affect our data
quality and our subsequent results. Therefore, the cutadapt tool removes those sequences, as well as any other
low-quality reads so that data is ready for analysis. However, since the data provided to us was not the "raw"
data, we could not evaluate the quality of the data itself, nor could we perform any quality control like
performing cutadapt. The researchers who provided the data to us most likely already performed quality checks
and used a tool like cutadapt in data cleaning.

FastQC
FastQC  is a tool that is used in checking the quality of raw sequencing data before performing large-scale
analysis. The software tool calculates and outputs quality metrics of each of the sequence reads, which allows
us to determine whether to keep a sequence read, to “cut away” the extraneous parts of a sequence (using
cutadapt), or to leave out the read all together. The metrics (shown as graphs and tables) include “Per sequence
quality scores” which indicates the average quality of reads over the sequences of an SRA run, “Sequence
length distribution”, the distribution of sequence lengths, and an important factor, “Overrepresented
sequences”, which are sequences that are not found to be in the human genome, among other measurements.
Specifically for overrepresented sequences, FastQC marks these as “overrepresented” because it cannot find
the source of the sequences; however, more often than not, they are adapters that have been “tacked on”
during the library preparation of the sequences, and are then caught by FastQC. This is where we would use the
cutadapt tool to cut out those unnecessary sections, or just completely leave the reads out of the analysis. In
the end, by combining all these factors, our decision to keep or leave out sequence reads follows the ERCC
(External RNA Controls Consortium) Quality Control Standards. These standards for our data (which is
specifically an exRNA-seq dataset) were drawn up at a Washington, DC conference in November 2015 in order
to have a universal set of quality check guidelines :

1. An individual RNA-Seq dataset is required to have a minimum of 100,000 reads that overlap (sense or
antisense) with any annotated RNA transcript in the host genome. The annotation includes all small RNAs,
such as miRNAs (from miRBase), piRNAs, tRNAs, snoRNAs, and circular RNAs, as well as long transcripts
from GENCODE, which includes both protein coding genes and long non-coding RNAs (lncRNAs).

2. The fraction of reads that align to the host genome (after filtering out contaminants, adaptor dimers and
ribosomal reads) that also align to any annotated RNA transcript (described in point #1) should be greater
than 0.5.

Below, we compare some of the FastQC outputs for reads that were marked as "Pass" versus those marked as
"Fail".

FastQC outputs of failed vs passed healthy serum samples
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As we can see in Figure 9, the quality of each base between the two sequence reads does not seem to be very
different. It is likely that the "failed" sample on the left did not pass the ERCC quality control check for other
reasons, as shown above and outlined by the ERCC. Since we do not have access to the raw sequencing data,
there is no way to know for sure how they determined the ERCC pass/fail label.

Figure 9: Comparison of Failed/Passed Base Quality Metrics for Healthy Serum Samples

Figure 10: Example of 'Overrepresented sequences' list



Shown in Figure 10 is an example of a table/list of overrepresented sequences that FastQC detects in a
sequence read. FastQC labels these as either possible primer sequences (by matching with primers that certain
tools, like Illumina, use), or just "No Hit", meaning an unknown source. Either way, it is a starting point for
cleaning any sequences that failed the FastQC check, by removing these sequences with tools like cutadapt.
Otherwise, we could just leave that sequence read out of our analysis.

FastQC outputs of failed vs passed Parkinson's serum samples

Figure 11 shows the base quality over the sequences of the two samples is not vastly different. Yet, the sample
on the left did not pass the ERCC quality check. So, looking further into the report, we note below that the
sample on the left did have an abnormal amount of N bases, which, in DNA sequencing terms, usually means
"unspecified", or a base that could be attributed to any of the 4 (A, T, G, C) main bases . This uncertainty is
not meaningful, so the sequence itself was removed. There could also have been other factors to this removal,
particularly in regard to the ERCC standards.
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Figure 11: Comparison of Failed/Passed Base Quality Metrics for Parkinson's Serum
Samples



Finally, we removed 19 samples from the analysis that were marked as failing the ERCC QC variable as shown
in Table 1 below.

Figure 12: Comparison of Failed/Passed N Content

MEETS ERCC QC STANDARDS?

PASS 324

FAIL 19

Table 1: Pass and Fail SRA Samples



EDA

Experiments Features Table
The Run  column in the features table represents a unique "ID" of the sample collection for a patient in our
study. Each patient (healthy, Parkinson's, or Alzheimer's) has a sequencing sample run associated with it, and
serves to uniquely identify the sample in our study. The CONDITION  column corresponds to the disease that
each patient was afflicted by (Alzheimer's or Parkinson's), or if the patient was part of the control group
(healthy). The BIOFLUID  column designates the source of the sample from the patient's body (CSF or serum). 
sex  and expired_age  are the gender of the subject, and the age of the subject at death, respectively. The 
PMI  column stands for "post-mortem interval", which means the amount of time between the subject's death

and when the sample was collected from the body of the subject. PlaqueTotal , Plaque density , and 
TangleTotal  all correspond to the amounts of structures called plaques and tangles in the brain. Plaques

are dense clumps in the space between nerve cells in the brain, and are known to negatively impact the brain
cells around it. When they develop around brain areas like the hippocampus (which is a part of the brain that is
fundamental in the process of making memories), it leads to the dementia symptoms of Alzheimer's. Tangles are
also structures that develop in the brain that negatively affect the transportation of neurons to and from certain
areas, altogether inhibiting brain function . Braak score , also referred to as "braak stage" is a score that is
used to measure the degree of brain dysfunction for both Alzheimer's and Parkinson's patients . LB Stage
corresponds to the stage of Lewy Body dementia, which is often related to Parkinson's disease. Lewy bodies
are clumps of proteins that develop in areas of the brain responsible for memory and movement - both are
impacted by Parkinson's . NIA-R  is the modified NIA-Reagan diagnosis of Alzheimer's disease is based on
consensus recommendations for postmortem diagnosis of Alzheimer's disease. The criteria rely on both
neurofibrillary tangles (Braak) and neuritic plaques (CERAD) . Finally, sn_depigmentation  is short for
substantia nigra depigmentation. The substantia nigra is a part of the midbrain; this brain region is usually found
to be depigmented in Parkinson's disease patients .

By inspecting these features, specifically performing EDA and doing research on what each of the values mean,
we can delve further into the analysis by determining what features will be important in the differential gene
analysis model in DESeq2, and which of them will significantly differentiate between Alzheimer's, Parkinson's
and healthy patients in terms of their genetics.
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General Patient Population

Uniqueness of the Data
After checking the uniqueness of the data there is only one sample from a single area of interest for each
subject. So we need to keep in mind that there may exist cross-subject differences for samples of different
biofluids.

Gender & Condition Breakdown of Each Biofluid
We broke down the samples into two groups based on biofluid, and then looked at the distribution of other
variables, namely gender, expired age, disease duration, PMI, total number of plaques, and total number of
tangles.

This dataset is comprised of 126 healthy control subjects, 110 subjects of Alzheimer's Diseases , and 107
Parkinson's Diseases patients.

Then, we broke the population by gender and biofluids shown in Figure 13 below. Although the gender
distribution is mostly balanced, the dataset contains significantly more female samples in the Parkinson's
disease group. Therefore, gender bias could potentially affect the result of our analysis.

Run SRR1568567 SRR1568730 SRR1568666 SRR1568510 SRR1568518

CONDITION Healthy Control Parkinson's
Disease

Alzheimer's
Disease

Parkinson's
Disease

Parkinson's
Disease

BIOFLUID Cerebrospinal
fluid Serum Serum Cerebrospinal

fluid
Cerebrospinal

fluid

sex male female female male female

expired_age 94 79 81 79 82

PMI 2.5 6 2.5 2.5 4.16

PlaqueTotal 15 2.75 11.5 7.5 0

Plaque
density frequent sparse frequent moderate zero

TangleTotal 12 3.25 11.1 3 6.5

Braak score IV II V II III

LB Stage No Lewy
bodies Limbic type No Lewy bodies Neocortical type Limbic type

Table 2: Important Feature attributes for first 5 Run Samples



Variable distributions Broken Down by Group in CSF and Serum
As shown in Figure 14 below, when comparing across conditions, more samples in the healthy control group
have a larger expired age in both CSF and Serum sample populations. The Alzheimer's group have shorter PMI
but higher total numbers of plaque and tangle in both CSF and Serum samples. When comparing across
biofluids sample populations, the Alzheimer's group has a higher expired age in the CSF population than in the
Serum population. The Parkinson's group in the CSF population has slightly larger disease durations.

Although the distributions have slight differences, the distinction between the distribution of the samples of
cerebrospinal fluid and that of serum is not too drastic to a degree where we need to handle anything especially
in our downstream analysis.

Figure 13: Samples breakdown by gender and biofluid.



"Disorder Markers"

As mentioned previously, NIA-R is a measurement for diagnosing Alzheimer's disease. We wanted to validate if
the values of the samples in our dataset reflect this claim.

Figure 14: Distributions of the above variables.



In Figure 15 below, in panel A, we saw that all the healthy control samples are either under the category "criteria
not met" or "no AD". Surprisingly, although it is expected that most of the AD samples are under the category
"high" there are some of the PD samples under "intermediate" and "low" categories. It might suggest that there
exist some commonalities between AD and PD.

Since Lewy Bodies are closely associated with Parkinson's disease, it is reasonable to see there are only
Parkinson's samples in the LB stage categories in panel B below. Among those samples, most of them are
under limbic type and neocortical type. Under "No lewy bodies" category, there are no Parkinson's patients,
which further proves that lewy bodies are specific to Parkinson's disease in our dataset.

According to Poewe et al., compared to control, Parkinson's disease is defined by sn depigmentation . So it is
intuitive to see, in panel C, the Parkinson's group has the most severe cases. However, same as what happened
in NIA-R distribution, there is not a clear separation between AD and PD, namely, there are still some AD
patients in the "mild", "moderate", or even "severe" categories.
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Braak score is used to classify the degree of pathology in both PD and AD. However, in our dataset, although
we can see a clearly different distribution for AD patients (the count increases as the stages go higher), there is
no clear separation between the PD patients and the healthy control (panel D).



Biofluid Region
During our EDA of the three biofluid regions specified in the replication project, we narrowed our focus to
determine how similar the two biofluid regions of the study were when it came to the basic variables explored
above (namely expired_age , DiseaseDuration , PMI , PlaqueTotal , and TangleTotal ).

Mean Breakdown of Disorders in Each Biofluid

Figure 15: "Disorder Markers" Distribution of Healthy, Alzheimer's, and Parkinson's
samples.



In Table 3 below, we can determine some important information about patients that suffer from the diseases
versus healthy patient samples. Clearly, the plaque and tangle counts are much higher in Alzheimer's patients,
which is expected because these structures are found primarily in the brains of people with Alzheimer's.
Another important point to note is that the disease duration of Parkinson's patients is significantly higher than
the other people, due to the fact that Parkinson's is a slowly progressive disorder and develops gradually (more
gradually than Alzheimer's). Therefore, the average disease duration of Parkinson's is much higher than the
other patients .22

Correlation Observation in Serum and Cerebrospinal Biofluids

Here, we inspect the correlation between features in our feature table within both serum and cerebrospinal
samples in Figure 16 below.

For serum samples, the most positively correlated variables seem to be PlaqueTotal  and TangleTotal
with a high correlation of 0.71; this follows because the presence (or absence) of both the plaque and tangle
structures in the brain is related to whether or not someone has Alzheimer's disease, as these structures affect
the brain in ways that cause the symptoms of AD. Another set of variables that seem to be positively correlated
is PMI  and DiseaseDuration , with a correlation of 0.26. This correlation could be a result of the
researchers' process for sample collection, since post-mortem interval and disease duration do not seem to
have a genetic or biological relationship. DiseaseDuration  has a negative correlation with both 
PlaqueTotal  and TangleTotal . When the duration of the disease is long, then both plaque and tangle

amounts are small, and vice versa.

In CSF, the most positively correlated variables are PlaqueTotal  and TangleTotal , both of which are
found in similar amounts in Alzheimer's patients. DiseaseDuration  and expired_age  were found to be
negatively correlated, which follows because if the disease lasts a prolonged period of time, the patient is more
likely to die sooner rather than later.

expired_age DiseaseDuration PMI PlaqueTotal TangleTotal

CONDITION BIOFLUID

Alzheimer's
Disease

Cerebrospinal
fluid 81.633 7.569 2.942 13.104 12.078

Serum 80.260 7.146 2.999 13.102 12.034

Healthy Control
Cerebrospinal

fluid 81.984 3.286 3.019 5.321 3.910

Serum 81.714 3.167 2.878 4.943 3.720

Parkinson's
Disease

Cerebrospinal
fluid 79.895 13.173 3.731 5.768 4.535

Serum 80.140 11.851 3.876 6.185 4.375

Table 3: Numeric feature attributes Grouped By Condition and Biofluid



We have seen that the overall correlation between Plaque Total and Tangle Total in both biofluid samples are
high, but after previous results from Table 3, we know that the distribution of those two measurements are
different for the AD group with high totals. Therefore, we plot the correlation per disorder in Table 4 and Table 5
that shows that Plaque Total and Tangle Total have a higher correlation of AD compared to PD and healthy;
specifically serum has a correlation of 0.68 in AD compared to the Healthy and PD which are 0.42 and 0.51
respectively and similarly cerebrospinal has a correlation of 0.68 in AD compared to the Healthy and PD which
are 0.42 and 0.48 respectively.

Figure 16: Serum (left) and Cerebrospinal (right) Biofluid Heatmap Correlations.

PlaqueTotal TangleTotal

CONDITION

Alzheimer's Disease
PlaqueTotal 1.00 0.68

TangleTotal 0.68 1.00

Healthy Control
PlaqueTotal 1.00 0.42

TangleTotal 0.42 1.00

Parkinson's Disease
PlaqueTotal 1.00 0.51

TangleTotal 0.51 1.00

Table 4: Serum Biofluid PlaqueTotal and TangleTotal Correlation



Gene Matrix
Another important step before we step into the formal analysis is to get familar with our gene matrix. Here, we
explored some basic properties including counts, missingness, basic distributions and basic correlations. In the
full gene matrix that includes all the sequences, we have a lot of NaN values because not every sequence is
detected in our sample. We started by looking at how many sequences are missing for one sample and how
many samples do not have a certain sequence, that is, the number of missing values of the columns and rows
of the matrix.

PlaqueTotal TangleTotal

CONDITION

Alzheimer's Disease
PlaqueTotal 1.00 0.68

TangleTotal 0.68 1.00

Healthy Control
PlaqueTotal 1.00 0.42

TangleTotal 0.42 1.00

Parkinson's Disease
PlaqueTotal 1.00 0.48

TangleTotal 0.48 1.00

Table 5: Cerebrospinal Biofluid PlaqueTotal and TangleTotal Correlation

Figure 17: Distribution of miRNA count missingness.



According to Figure 17 and 18 above, a lot of miRNA sequences only exist in some samples (Figure 17) and
most of the samples have a large amount of miRNA sequences missing. It indicates that miRNA sequence set
may be specific to individuals, which makes our finding even more interesting if we can find several common
miRNAs that are significantly up or down regulated among all samples.

Processing of Data

Merging counts
The data target step automatically downloaded from the exRNA Atlas database a gene count file for each SRA
Run sample. This gene count table has a column that indicates the abundance count. The 322 abundance files
were merged into one gene count file. Special care was needed to ensure that the columns and rows match up -
the columns were the SRA runs, and the rows were the gene counts. The output was a table with over 180K
genes, however most of the genes had no overlap amongst the SRA samples. After removing null rows, the final
gene matrix table had 400+ miRNA. A portion of the final gene matrix table is shown in Table 6 below.

Figure 18: Distribution of missingness of samples.

SRR1568478 SRR1568692 SRR1568530 SRR1568514

miRNAs

mir-39-3p 82 104 87 121

mir-54 61 54 61 122

mir-238 87 81 60 80

mir-22-3p 9 18 28 23

Table 6: Subset of the gene matrix of top 4 miRNA's based on count versus first 4 SRA
Run's.



Another output of the merge step was to generate the feature experiment table shown in Table 7 which has the
features of interest for all the SRA Run's, included in the gene matrix.

Furthermore, the following cleanup was done in the merge step:

The sample SRR1568391 was removed due to the SRA Run table having two rows which had the same
SRA number but with different values.
The imputation with TangleTotal attribute as it had 2 samples with missing data which was replaced with the
mean (6.63).

Normalized Gene Count
The process of normalization used the merged gene matrix and feature experiment table generated from the
merge step, and then used DESeq2's transform to generate a normalized count matrix file. As well as outputting
the standard normalized count matrix we also performed Variance Stabilization Transformation (VST) to generate
an additional normalized matrix which used the parametric fitting type. VST transforms data is by creating new
values in terms of y where the variability of the new y-values is unrelated to the x-values . VST finds a function
that can be applied to the original x values to generate the new y-values. Methods like VST and normalization
allow us to primarily scale our data so that it is in a format that allows us to perform further analysis. The values
in our data become more manageable all while still maintaining their original statistical importance and meaning,
especially if our variables in our pre-normalized data have different scales .

The descriptive statistics for both the normalized and the VST normalized gene matrix is shown in Table 8 and 9
below.
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Table 7: Feature table.

Disorder expired_age Biofluid sex PMI sn_depigmentation Braak_Score

Run

SRR1568567 Control 94 Cerebrospinal male 2.50 none IV

SRR1568730 Parkinson 79 Serum female 6.00 severe II

SRR1568666 Alzheimer 81 Serum female 2.50 mild V

SRR1568510 Parkinson 79 Cerebrospinal male 2.50 severe II

SRR1568518 Parkinson 82 Cerebrospinal female 4.16 severe III



The descriptive statistics showed as expected the VST had a smaller range of values. However, we wanted to
verify that the two sets of normalized gene count matrices were correlated. For this we took a number of SRA
samples from each matrix and compared them against each other. Figure 13 below shows the correlation for
SRR1568567 as well as SRR1568584, seen in Figure 19 below. The result of the R  Pearson correlation of 0.97
shows a strong indication that the data from both matrices is consistent. For further downstream processing, we
used the VST gene matrix.
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Average Sample

count 400.000

mean 1.742

std 5.366

min 1.018

25% 1.018

50% 1.018

75% 1.034

max 70.782

Table 8: Normalized gene matrix descriptive statistics summarized for all samples.

Average Sample

count 400.000

mean 0.263

std 0.679

min 0.087

25% 0.087

50% 0.087

75% 0.101

max 6.045

Table 9: VST gene matrix descriptive statistics summarized for all samples.



Remove missing sequences
We merged the counts based on the readCounts_miRNAmature_sense.txt for each sample. This generated a
merged gene matrix that has approximately 1,800 rows, but many were repeated miRNAs. So we grouped rows
together based on the same miRNA to avoid miRNA counts that were artificially low. Finally, based on the
original paper  we reduced our focus to the top 400 miRNAs by prioritizing the rows that had the most total
gene counts.
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PCA
We performed Principal Component Analysis (PCA) on the VST gene matrix for two PCA Plots, one with the
grouping set to disorder and another plot with the grouping set to biofluid.

PCA uses linear combinations to explain the variance-covariance structure of a set of variables. Data reduction
and data interpretation are the main reasons for the use of PCA with the latter being the method we
incorporated in the replication project . For the purposes of this project, we did not remove any samples from
our data thus negating the need to do any sort of dimensionality reduction of our data. In doing so, we did not
experience any reduction in our data in terms of size and scope which would be common in other PCA
implementations. We used PCA purely on an exploratory level where we could observe relationships within our
data that may not have been as obvious to us. In Figure 20 below, there are visibly two groups formed in both
the left and right charts. However, the spread of every disorder and biofluid, respectively, is relatively equal
across the chart.
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Figure 19: Two SRA Run's regression of log norm vs VST counts.



Missing of Genes
Another analysis we did was with the entire set of counts which not only included miRNA's but also protein
coding genes. The combined gene matrix file has approximately 180K genes but most were missing across all
samples and are thus not relevant for analysis and compromise quality and performance of the analysis.

Furthermore, we can identify the top and bottom genes based on a statistic for each gene across the samples
that measures the spread against the mean normalized count. Genes which had little spread are likely
candidates that might not be important as they do not significantly vary across the samples. The spread statistic
we developed was the L1 distance against the mean. Table 10 below shows the top 3 and bottom 3 genes and
the spread values. The gene with the highest count variance was mir-486a-5p and the bottom ranked gene was
mir-2797d.

Figure 20: (left) PCA based on grouping by disorder. (right) PCA based on grouping by
biofluid.

Top Ranked Genes

Gene Spread

0 mir-486a-5p 513.508

1 mir-27b-3p 456.435

2 mir-143 393.827

   

Bottom Ranked Genes

Gene Spread

397 mir-19d 1.53166

398 mir-199a-5p 1.53166

399 mir-2797d 1.53166

   

Table 10: (left) the top ranked genes and their spread. (right) the bottom ranked genes and
their spread.



Data Analysis
The analysis of the data was performed using the same technique in the research paper , namely to consider
each biofluid separately, and within each biofluid to consider each disorder (versus control) separately. This
resulted in 4 combinations of analysis computations that were performed. With the top genes identified, we
filtered only the samples for the particular biofluid (Serum, Cerebrospinal fluid) and then further filtered based on
one of the 2 disorders (Alzheimer's, Parkinson's) plus the control. The basis of the analysis was the Likelihood
Ratio Test (LRT), which is a hypothesis test based on a full and reduced model using the DESeq2 package. The
model used the following variables:

expired_age
sex
PMI
sn_depigmentation
Braak_Score
TangleTotal
Plaque_density
PlaqueTotal

The outcome variable was Disorder which was not included in the reduced model. The premise of the LRT is to
compare models in terms of how they fit the available data by comparing the likelihood scores of the two
models  using a statistical test of the goodness-of-fit between two models. The full model with Disorder is
compared to a reduced model without Disorder . The output from the analysis was a LRT table which included
the baseMean, log2 Fold Change, lfcSE, stat, the pvalue, and adjusted pvalue. The descriptive summary of LRT
in the cerebrospinal fluid for Parkinson's is shown in Table 11 below.
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baseMean log2FoldChange lfcSE stat pvalue padj

count 400.000 400.000 400.000 400.000 400.000 400.0

mean 2.863 0.028 0.430 0.105 0.871 1.0

std 6.173 0.133 0.020 0.305 0.185 0.0

min 2.022 -0.405 0.285 0.000 0.095 1.0

25% 2.031 -0.002 0.429 0.000 0.827 1.0

50% 2.065 0.004 0.436 0.003 0.960 1.0

75% 2.178 0.046 0.437 0.048 0.996 1.0

max 79.698 0.723 0.540 2.792 1.000 1.0

Table 11: The LRT descriptive summary for biofluid Cerebrospinal fluid for Parkinsons.



MA Plot
The LRT data for each of the 4 comparisons was used to generate a 2x2 MA Plot shown in Figure 21 below.
This is a scatter plot of the mean of the normalized counts against the log fold change. There does not appear
to be any highly significant patterns as the data points appear to have a similar distribution.

Figure 21: MA Plot for each biofluid versus each disorder.



Heat Maps
Heatmaps were generated from the LRT data by selecting the top 20 miRNA's based on the average mean
normalized count and then plotting against the SRA samples. Each of the 4 analysis regions is plotted in a 2x2
heatmaps in Figure 22 below. Heatmaps allow us to observe specific values of interest across two axis variables
in the form of a grid with colored cells . The variables we have used for our axes are the patients and the
miRNAs identified across our patient samples, with the main value of interest being the miRNA expression
between patients of different disorders. By observing our value of interest, miRNA expression, we can determine
if any patterns or associations exist within our 4 analysis regions. It appears that Parkinson's across the
biofluids are more similar and Alzheimers across the biofluids are more similar, this is based on the general
trends seeing that Parkinson's has less intensity with raw Z-scores closer to 0 and Alzheimers having higher
intensity with extreme raw Z-scores -4 and 4. However, one noticeable difference is that the placement of the
coloring across the heat map is more similar between the biofluids. Meaning that cerebrospinal fluid across
Parkinsons and Alzheimers has a more similar color mapping across starting with higher Z-scores (red) then to
lower Z-scores (blue). Similarly, serum across Parkinsons and Alzheimers has a more similar color mapping
across starting with lower Z-scores (blue) then to higher Z-scores (red). This means that Alzheimers has higher
raw Z-scores than Parkinsons, but more importantly the notable similarities in the color scheme across biofluids
means that there is some commonality between diseases.
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Histograms of case versus control differential expression
We plot the histogram distribution of the pvalues for each of the 4 regions shown in Figure 23 below. Each plot
below has its peak at 1.0 with a general increase across. Interestingly, the charts for cerebrospinal vs
Parkinsons and Alzheimers look similar and the charts for serum vs Parkinsons and Alzheimers are more similar.
This is significant to note because rather than the disease being more similar across biofluids, it happens to be
that the biofluids are more similar across the two disorders.

Figure 22: Top 20 Expressed miRNA Heatmap for each biofluid versus each disorder.



Venn Diagram of Disorders
Another visualization performed is a venn diagram seen in Figure 24 below that shows overlap of miRNAs
differentially expressed between Parkinson (red) and Alzheimer (green). Majority of miRNAs are in Parkinson's
with 17 listed. There are 14 miRNAs in Alzheimer's. But between the two disorders there are 13 miRNAs shared.
Therefore, there is still a good amount of miRNA overlap between the diseases.

Figure 23: Histogram of pvalue for each biofluid versus each disorder.



Spearman correlations of log2 fold gene expression
A spearman correlation matrix is shown in Figure 25 which is a pairwise Spearman correlation of log2 fold gene
expression changes between each disorder and CTL in each biofluid. The circle sizes are scaled to reflect
absolute Spearman correlations. To produce this plot we took the log2 fold gene expressions column from each
of the 4 LRT analyses we performed and then used Pandas correlation function to generate a R² Pearson
correlation number.

The striking amount of correlation is between Parkinson and Alzheimers in the cerebrospinal fluid region. This is
very important as it implies that there is a significant amount of correlation between the two disorders for this
biofluid with the highest correlation of 0.30. There is also a significant amount of correlation between
Parkinson's and Alzheimer's in the serum region with a correlation of around 0.27. There is high correlation
between the biofluids and the two disorders, especially in the cerebrospinal fluid region.

Figure 24: Venn Diagram showing miRNA overlap between Parkinson's and Alzheimer's in
both biofluids.



Volcano Plot
Figure 26 shows a volcano plot with the two disorders against the two biofluid regions. Volcano plots help to
differentiate the down and up regulated miRNA sequences with respect to the control group (healthy patients). It
is worthwhile to note that when miRNAs are downregulated, this means that there is less miRNA expression -
because miRNA regulates mRNA expression, this results in more mRNA expression. mRNA, of course, dictates
what proteins are synthesized in the body. In that same vein, when miRNA are upregulated, this means that they
regulate mRNA expression at a higher rate, causing less mRNA expression. Chart (a) shows only up regulated
miRNAs. Chart (b) shows both down and up regulated miRNAs, with mostly up regulated. Chart (c) shows
mostly up regulated miRNAs with few down regulated ones as well. Finally, chart (d) shows a higher amount of
down regulated miRNAs with some up regulated ones as well.

Figure 25: Spearman correlation of log2 fold gene expression for each biofluid against
each disorder.



Additional detailed volcano plots were made to that included labels for the potentially important miRNA's. Figure
27, shows the Alzheimer vs Serum detailed Volcano plot which shows the miRNA that are upregulated and
downregulated. These miRNA's are further analysed by mapping them to the specific mRNAs that they regulate
the expression of in the following sections.

Figure 26: Volcano plot Biofluid versus Disorder.



Mappings

In oue final analysis, we mapped the overlapping miRNAs of interest to their target mRNAs, and subsequently,
to the genes they encode.

When mapping certain miRNAs to the specific mRNAs that they regulate, one issue we ran into was that a
miRNA can regulate hundreds of mRNAs. This is because miRNAs only require a small amount of nucleotide
matches to be able to latch onto an mRNA and suppress its expression. Therefore, miRNAs can have many
target mRNAs. Of course, we are more interested in a small amount of relevant mRNAs, specifically those that
encode proteins involved in neurological processes. So, we chose to focus our analysis on the top 3 target
mRNAs for each miRNA, ranked in terms of the mRNA's (gene's) "Target Rank" and "Target Score", dictated by
miRDB.org. The site allowed us to search miRNA sequences for their target genes. As mentioned above, since
miRNA can have hundreds of matches, these are just a few matches, some selected because of their high
"Target Ranks" and "Target Scores", and others because of past research done by scientists on the proteins'
involvement with neurological processes.

Note: The miRNA and their mappings included here are not the full list of miRNAs and their proteins. Those
included in each section are the miRNA that repressed mRNA more relevant to the disorders we are studying,
primarily encoding proteins responsible for certain brain functions.

Figure 27: Alzheimer vs Serum Detailed Volcano plot with miRNAs.



Cerebrospinal & Alzheimer's Mappings
mir-92b: beta-1,3-galactosyltransferase 2 (B3GALT2), mannosidase alpha class 2A member 1 (MAN2A1), F-box
and WD repeat domain containing 7 (FBXW7), neurofilament medium (NEFM), phospholipase D1 (PLD1), sortilin
related receptor 1 (SORL1)

mir-34b: insulin induced gene 1 (INSIG1), protein phosphatase 6 regulatory subunit 3 (PPP6R3), furin, paired
basic amino acid cleaving enzyme (FURIN), neuroplastin (NPTN)

mir-338: Cbl proto-oncogene (CBL), galectin like (LGALSL), RAB14, member RAS oncogene family (RAB14),
neuropilin 1 (NRP1), phosphatidylinositol binding clathrin assembly protein (PICALM)

mir-548h: CREB binding protein (CREBBP), ubiquitin conjugating enzyme E2 D1 (UBE2D1), zinc finger CCHC-
type containing 14 (ZCCHC14), neuron navigator 2 (NAV2)

mir-34c-5p: family with sequence similarity 76 member A (FAM76A), delta like canonical Notch ligand 1 (DLL1),
MDM4, p53 regulator (MDM4), neuron navigator 1 (NAV1), neuron navigator 3 (NAV3), microtubule associated
protein tau (MAPT)

Based on prior research, Alzheimer's disease has primarily been linked with a protein called apolipoprotein E
(APOE) . Researchers have found that the presence of this particular gene has been associated with the
formation of amyloid plaques (the presence of which we studied and incorporated into our DESeq2 model).
These protein clumps "clog up" the brain and lead to the death of nerve cells. Unfortunately, the mapping of the
differentially expressed miRNA in the CSF of Alzheimer's patients did not uncover this protein. Another gene
commonly linked with AD is the tau protein, which contributes to the "tangles" in Alzheimer's brains (we also
studied this in our analysis). In this vein, some of the genes that were found to be affected by one of the up-
regulated miRNAs were tau tubulin kinase 2 (TTBK2) and microtubule associated protein tau (MAPT). These
genes contribute to making the protein that forms the tau tangles in the brain. However, there are other proteins
that have been found to be related to the onset of Alzheimer's . One such gene was complement C3b/C4b
receptor 1 (CR1). The upregulated miRNA represses the expression of this gene, which decreases the
production of a protein in the brain that is partly responsible for controlling brain inflammation. The absence of
this protein can result in inflammation, a possible cause of Alzheimer's. Another such gene is the one that
encodes phosphatidylinositol binding clathrin assembly protein (PICALM), which contributes to the process of
neurons communicating signals to each other and ensuring that the right communication happens in order for
the body to function properly, as well as the process of memory formation . The absence of this protein can
negatively affect these processes. There are also neurological proteins that are affected by the up-regulation of
miRNA. For example, the amount of neuroplastin available in the brain is affected by some miRNA. Neuroplastin
is a protein that is important in neuron and synaptic functions; in other words, they are significant in the process
of cells communicating with each other .
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Cerebrospinal & Parkinson's Mappings
mir-34b: insulin induced gene 1 (INSIG1), protein phosphatase 6 regulatory subunit 3 (PPP6R3), furin, paired
basic amino acid cleaving enzyme (FURIN), neuroplastin (NPTN)

mir-34c-5p: family with sequence similarity 76 member A (FAM76A), delta like canonical Notch ligand 1 (DLL1),
MDM4, p53 regulator (MDM4), neuron navigator 1 (NAV1)

mir-92b: beta-1,3-galactosyltransferase 2 (B3GALT2), mannosidase alpha class 2A member 1 (MAN2A1), F-box
and WD repeat domain containing 7 (FBXW7), neurofilament medium (NEFM)

mir-130a: gap junction protein alpha 1 (GJA1), cytoplasmic polyadenylation element binding protein 1 (CPEB1),
SKI/DACH domain containing 1 (SKIDA1), leucine rich repeat kinase 2 (LRRK2)

mir-34b-5p: teneurin transmembrane protein 1 (TENM1), ELMO domain containing 1 (ELMOD1), regulatory
factor X3 (RFX3), parkin RBR E3 ubiquitin protein ligase (PRKN)

mir-23a: zinc finger protein 99 (ZNF9), semaphorin 6D (SEMA6D), family with sequence similarity 234 member B
(FAM234B)

Based on prior research, researchers have pinpointed some possible genes that, coupled with family history,
can mutate and cause Parkinson's disease . We were able to find miRNA that affected the expression of some
of these genes, and consequently the proteins that they help to create. One such gene is leucine rich repeat
kinase 2 (LRRK2). This gene encodes a protein called dardarin, which plays a big role in biological processes
that require inter-protein interaction, like the transmitting of signals between neurons or assembling a cell's
cytoskeleton (its physical framework) . Another protein found to be related to Parkinson's is parkin RBR E3
ubiquitin protein ligase (PRKN). This gene encodes the protein parkin, which helps in the cell by tagging
unneeded proteins with markers called ubiquitin. This lets other parts of the cell know that those proteins are
unneeded, so they are properly disposed in structures called proteasomes. With the absence of parkin, this
system is compromised, and the build-up of unnecessary proteins may lead to issues that cause physical
movement and balance problems associated with PD. The failure of the ubiquitin-proteasome system can also
affect normal cell activities and the cells themselves, specifically those that produce dopamine. Decrease of
dopamine production is a tell-tale sign of Parkinson's . One neurologically-related protein that we found to be
affected by miRNA expression was neurofilament medium (NEFM). The neurofilament medium protein encodes
the protein neurofilament, which is used by cells to mark neurons that are damaged. If this system is affected,
there would be no way to distinguish between working and damaged neurons, gravely affecting neuronal
activity .
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Serum & Alzheimer's Mappings
mir-16: pappalysin 1 (PAPPA), fatty acid synthase (FASN), unc-80 homolog, NALCN channel complex subunit
(UNC80), clusterin (CLU), triggering receptor expressed on myeloid cells 1 (TREM1), neurofibromin 1 (NF1)

mir-186: RUN and FYVE domain containing 3 (RUFY3), zinc finger CCCH-type containing 11A (ZC3H11A), zinc
finger protein 644 (ZNF644), neuronal growth regulator 1 (NEGR1)

mir-92: beta-1,3-galactosyltransferase 2 (B3GALT2), mannosidase alpha class 2A member 1 (MAN2A1), F-box
and WD repeat domain containing 7 (FBXW7), sortilin related receptor 1 (SORL1)

mir-10b: cell adhesion molecule 2 (CADM2), transcription factor AP-2 gamma (TFAP2C), CCR4-NOT
transcription complex subunit 6 (CNOT6), brain derived neurotrophic factor (BNDF)

mir-22: glutamate metabotropic receptor 5 (GRM5), fucosyltransferase 9 (FUT9), neuroepithelial cell
transforming 1 (NET1)

mir-210: insulin like growth factor 2 (IGF2), iron-sulfur cluster assembly enzyme (ISCU), galanin receptor 2
(GALR2), brain derived neurotrophic factor (BDNF), neuronal pentraxin 1 (NPTX1)

mir-144-5p: zinc finger protein 292 (ZNF292), ATPase H+ transporting V1 subunit C1 (ATP6V1C1), HIC ZBTB
transcriptional repressor 1 (HIC1), neurotrophic receptor tyrosine kinase 2 (NTRK2), neuregulin 3 (NRG3)

As mentioned above when inspecting Alzheimer's samples from CSF, researchers have already pinpointed some
genes that have a likely connection with Alzheimer's. One of these genes is the triggering receptor expressed on
myeloid cells 1 (TREM1). Receptors on myeloid cells are responsible for controlling inflammation and
neurological development . Inflammation, especially in the brain, as mentioned earlier, is a tell-tale sign of
Alzheimer's. Clusterin (CLU) is a gene that helps to regulate amyloid-beta amounts in the brain - these, as we
know, make up the plaque structures that are found in Alzheimer's brains. An imbalance in the production and
movement of amyloid-beta is then crucial to the development of Alzheimer's . Another such gene is sortilin
related receptor 1 (SORL1). SORL1 is a gene that is involved in the production of amyloid-beta peptides, which
are the same plaque structures that are found in the brain of Alzheimer's patients . There were also
neurologically-related genes that were found to be affected by the differentially expressed miRNA. For example,
the count of brain derived neurotrophic factor (BDNF) was found to be decreased by an up-regulated miRNA.
The BDNF protein is largely responsible for promoting the growth of and dealing with the maintenance of nerve
cells . One target gene of many miRNA in this group was neuregulin 3 (NRG3), which is a group of signaling
proteins that helps to oversee cellular functions of neuronal systems, like survival, proliferation, and
differentiation of nerve cells . Neuronal pentraxin 1 (NP1) is another gene that was affected by miRNA. The
miRNA that targeted NP1 was actually found to be down-regulated, which increases the production of NP1;
NP1 is involved in the process of inducing neuronal cell death, and a surplus of NP1 could result in more
neurons being destroyed prematurely .
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Serum & Parkinson's Mappings
mir-192-5p: NIPA like domain containing 1 (NIPAL1), basic helix-loop-helix family member e22 (BHLHE22),
protein kinase D3 (PRKD3), neurofilament light (NEFL)

mir-182-5p: protein kinase cAMP-activated catalytic subunit beta (PRKACB), regulator of G protein signaling 17
(RGS17), basonuclin 2 (BNC2), neurocalcin delta (NCALD)

mir-10b-5p: cell adhesion molecule 2 (CADM2), transcription factor AP-2 gamma (TFAP2C), CCR4-NOT
transcription complex subunit 6 (CNOT6), brain derived neurotrophic factor (BDNF)

mir-144-5p: zinc finger protein 292 (ZNF292), ATPase H+ transporting V1 subunit C1 (ATP6V1C1), HIC ZBTB
transcriptional repressor 1 (HIC1), neuregulin 3 (NRG3)

mir-92: folliculin interacting protein 1 (FNIP1), CD69 molecule (CD69), G3BP stress granule assembly factor 2
(G3BP2), neurofilament medium (NEFM)

mir-92b: beta-1,3-galactosyltransferase 2 (B3GALT2), mannosidase alpha class 2A member 1 (MAN2A1), F-box
and WD repeat domain containing 7 (FBXW7), neurofilament medium (NEFM)

mir-30c-5p: twinfilin actin binding protein 1 (TWF1), UDP-GlcNAc:betaGal beta-1,3-N-
acetylglucosaminyltransferase 5 (B3GNT5), embryonic ectoderm development (EED), neural cell adhesion
molecule 1 (NCAM1), leucine rich repeat kinase 2 (LRRK2)

mir-548aq-3p: polyhomeotic homolog 3 (PHC3), CREB3 regulatory factor (CREBRF), protein tyrosine
phosphatase, receptor type K (PTPRK), synuclein alpha (SNCA)

mir-186: RUN and FYVE domain containing 3 (RUFY3), zinc finger CCCH-type containing 11A (ZC3H11A), zinc
finger protein 644 (ZNF644), neuronal growth regulator 1 (NEGR1)

mir-16: pappalysin 1 (PAPPA), fatty acid synthase (FASN), unc-80 homolog, NALCN channel complex subunit
(UNC80), clusterin (CLU), triggering receptor expressed on myeloid cells 1 (TREM1), neurofibromin 1 (NF1)

mir-223: F-box and WD repeat domain containing 7 (FBXW7), SP3 transcription factor (SP3), synuclein alpha
(SNCA), neuron derived neurotrophic factor (NDNF)

In this group of data/results, something that stood out was the overlap of many proteins with the Alzheimer's in
serum group, as well as the two CSF groups. Proteins like neurofilament, neuregulin, BDNF, and neuronal
growth regulators have been affected by up- and down-regulated miRNAs in both the CSF and serum groups
for the two disease conditions. One new protein that seems to be related to Parkinson's and serum specifically,
though, is neurocalcin delta (NCALD). A decrease in NCALD has been shown to protect against spinal muscular
atrophy, a symptom tangentially related to the symptoms of Parkinson's . Another target protein that has also
been pinpointed by researchers in the past to be connected to Parkinson's is synuclein alpha (SNCA). This is
one of the most common proteins linked to Parkinson's - mutations of this protein can disrupt cell homeostasis
and neuron death .
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Overlapping miRNA
These mappings are from the Venn Diagram in Figure 24.

mir-16: mir-16: pappalysin 1 (PAPPA), fatty acid synthase (FASN), unc-80 homolog, NALCN channel complex
subunit (UNC80), clusterin (CLU), triggering receptor expressed on myeloid cells 1 (TREM1), *leucine rich repeat
kinase 1 (LRRK1)

mir-92b: beta-1,3-galactosyltransferase 2 (B3GALT2), mannosidase alpha class 2A member 1 (MAN2A1), F-box
and WD repeat domain containing 7 (FBXW7), neurofilament medium (NEFM)

mir-34b: insulin induced gene 1 (INSIG1), protein phosphatase 6 regulatory subunit 3 (PPP6R3), furin, paired
basic amino acid cleaving enzyme (FURIN), neuroplastin (NPTN)

mir-182-5p: protein kinase cAMP-activated catalytic subunit beta (PRKACB), regulator of G protein signaling 17
(RGS17), basonuclin 2 (BNC2), neurocalcin delta (NCALD)

mir-34c-5p: family with sequence similarity 76 member A (FAM76A), delta like canonical Notch ligand 1 (DLL1),
MDM4, p53 regulator (MDM4), neuron navigator 1 (NAV1), neuron navigator 3 (NAV3), microtubule associated
protein tau (MAPT)

mir-10b: cell adhesion molecule 2 (CADM2), transcription factor AP-2 gamma (TFAP2C), CCR4-NOT
transcription complex subunit 6 (CNOT6), brain derived neurotrophic factor (BNDF)

mir-186: RUN and FYVE domain containing 3 (RUFY3), zinc finger CCCH-type containing 11A (ZC3H11A), zinc
finger protein 644 (ZNF644), neuronal growth regulator 1 (NEGR1)

mir-144-5p: zinc finger protein 292 (ZNF292), ATPase H+ transporting V1 subunit C1 (ATP6V1C1), HIC ZBTB
transcriptional repressor 1 (HIC1), neuregulin 3 (NRG3)

We found that the overlapping miRNA that are differentially expressed are all up-regulated, meaning that they
restrict the amounts of the target proteins listed above. These overlapping miRNA are the central focus of our
research project. We have discussed the importance of many of these genes in the previous sections for the
individual conditions and data sources, and the neural functions that they contribute are all affected in the
development of both Alzheimer's and Parkinson's diseases. Specifically for Alzheimer's, for example, clusterin
helps to regulate the processing of amyloid-beta structures, which make up plaques in Alzheimer's brains.
Another Alzheimer's-focused gene is TREM1, which encodes receptors on myeloid cells. These receptors are
responsible for controlling brain inflammation, which is a tell-tale sign of Alzheimer's. Specifically for
Parkinson's, LRRK1 plays a big role in biological processes that require inter-protein interaction, like the
transmitting of signals between neurons - the repression of this gene can play a big factor in the movement
problems of Parkinson's patients. What is most interesting, however, are the overlapping miRNA that seem to
affect both Alzheimer's and Parkinson's disease patients, particularly their brains. The decrease in the amounts
of the following proteins can affect the brain function of those affected. For example, neurofilament medium
encodes neurofilament, the protein that is used by cells to mark neurons that are damaged. Neuroplastin is a
protein that is important in neuron and synaptic functions. Neurocalcin delta has been shown to protect against
spinal muscular atrophy, a symptom tangentially related to the symptoms of Parkinson's. It has also been linked
with the creation of neurons in the hippocampus of adults, which is the part of the brain that is responsible for
memory. This, of course, is negatively affected in those with Alzheimer's. The BDNF protein is largely



responsible for promoting the growth of and dealing with the maintenance of nerve cells. Finally, neuregulin 3
(NRG3), which is a group of signaling proteins that helps to oversee cellular functions of neuronal systems, like
survival, proliferation, and differentiation of nerve cells.

Conclusion
Our goal for this study was to find genetic overlapping in Alzheimer's and Parkinson's in order to guide future
research with key miRNA that are present in both diseases. We identified 13 up and down-regulated miRNAs in
the CSF of Alzheimer's patients, 10 up and down-regulated miRNAs in the CSF of Parkinson's patients, 14 up
and down-regulated miRNAs in the serum of Alzheimer's patients, and 22 up and down-regulated miRNAs in
the serum of Parkinson's patients. From those, we identified 13 miRNAs that were shared between the diseases
and between the biofluids. We mapped all the up-regulated, down-regulated and overlapping miRNAs to the top
3 target mRNAs that they are binding to (ranked in terms of the mRNA's (gene's) "Target Rank" and "Target
Score"). As stated, however, these top 3 mRNAs are not necessarily relevant to our studies of brain disorders,
so we also identified mRNAs that were tangentially related to neural functions. With careful analysis we
discovered that the overlapping miRNA's were all up-regulated, meaning the miRNAs are restricting the
amounts of target proteins that we found to be produced at lower amounts.

The important target proteins we have found in Alzheimer's are:

clusterin (CLU) 
triggering receptor expressed on myeloid cells 1 (TREM1) 
microtubule associated protein tau (MAPT) 

These have all been linked as key to Alzheimer's Disease by previous studies.

The important target protein we have found in Parkinson's is:

leucine rich repeat kinase 1 (LRRK1) 

This has been linked as key to Parkinson's Disease by previous studies.

However, the most significant proteins we have found are listed below, these have not to our knowledge been
identified yet in other studies. These are common to both Alzheimer's and Parkinson's diseases:

neurofilament medium (NEFM)
neuroplastin (NPTN)
neurocalcin delta (NCALD)
brain derived neurotrophic factor (BNDF)
neuregulin (NRG3)

We hope that these significant proteins that we found as genetically overlapped in the cerebrospinal and serum
biofluid regions will help future researchers and scientists to gain a better understanding at how these two
diseases are linked and that future progress can be made in order to target these proteins to inhibit or lessen the
effects of both Alzheimer's and Parkinson's Diseases.
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Appendix

Project Targets

Running the project
• To install the dependencies, run the following command from the root directory of the project: 

pip install -r requirements.txt 

target: data
• To process the data, from the root project directory run the command:

python3 run.py data 

• The data pipeline step takes the .fastq compressed files as input and then applies two transformations:
process and align

• This pipeline step also uses an additional CSV file that is the SRA run database, a sample looks like as follows:

Run expired_age    CONDITION    BIOFLUID      
SRR1568567  40  Parkinson's Disease Cerebrospinal  

• The configuration files for the data step are stored in config/data-params.json. These include the parameters
for the tools as well as the directories used for storing the raw, temporary and output files.

"raw_data_directory": "./data/raw", 
"tmp_data_directory": "./data/tmp", 
"out_data_directory": "./data/out", 

• The configuration also includes an attribute to the SRA run input database (described above), and an attribute
of where to store that in the data folder. Additional filter attributes are included for ease of use to avoid
processing all patients, if this filter_enable is set it will only process a subset of SRA rows (filter_start_row to
filter_start_row + filter_num_rows).



"sra_runs" : { 
   "input_database" : "/datasets/SRP046292/exRNA_Atlas_CORE_Results.csv", 
   "input_database2" : "/datasets/SRP046292/SraRunTable.csv", 
   "input_database3" : "/datasets/SRP046292/Table_S1.csv", 
   "output_database" : "data/raw/exRNA_Atlas_CORE_Results.csv", 
   "filter_enable" : 0, 
   "filter_start_row" : 120, 
   "filter_num_rows" : 10    
}, 

• An optional transformation of the data is "process" that uses the following data configuration below that will
invoke cutadapt which finds and remove adapter sequences. The attributes include the adapters (r1 and r2) to
identify the start and end of pairs are a JSON array. The attribute enable allows to disable this cleaning step,
instead it will simply copy the paired files from the source dataset. The arguments attribute allows flexible
setting of any additional attribute to the cutadapt process. Finally, we have two wildcard paths that indicate the
location of the SRA fastq pair files (fastq1 and fastq2).

"process" : { 
   "enable" : 1, 
   "tool" : "/opt/conda/bin/cutadapt", 
   "r1_adapters" : ["AAAAA", "GGGG"], 
   "r2_adapters" : ["CCCCC", "TTTT"], 
   "arguments" : "--pair-adapters --cores=4", 
   "fastq1_path" : "/datasets/srp073813/%run_1.fastq.gz",  
   "fastq2_path" : "/datasets/srp073813/%run_2.fastq.gz" 
}, 

• The second transformation of the data is "aligncount" that can be set to either use download, STAR or Kallisto.
The choice is controlled by the aligncount attribute:

"aligncount" : "download", 

• download step will use the ftp location of the gzip file in the Sra table and download using the curl command
and unzips and extracts the readCounts_gencode_sense.txt which represents the gene counts for the sample.

"download" : { 
   "enable" : 1, 
   "tool" : "curl", 
   "arguments" : "-L -R", 
   "read_counts_file" : "readCounts_gencode_sense.txt" 
}, 

• kallisto uses the index_file attribute, the location of the directory of the reference genome, which for this
replication project was GRCh37_E75. The arguments attribute allows flexible setting of any additional attribute
to the kallisto process. Including the bootstrap samples.The attribute enable allows to disable this alignment



step, this is useful for debugging the process prior step, for example, you can run quality checks on the
processed fastq files before proceeding to alignment.

"kallisto" : { 
   "enable" : 1, 
   "tool" : "/opt/kallisto_linux-v0.42.4/kallisto", 
   "index_file" : "/datasets/srp073813/reference/kallisto_transcripts.idx", 
   "arguments" : "quant -b 8 -t 8" 
}, 

• STAR uses the gene_path attribute is the location of the directory of the reference genome, which for this
replication project was GRCh37_E75 as described in the reference_gene attribute. The arguments attribute
allows flexible setting of any additional attribute to the STAR process. Including TranscriptomeSAM in the
quantMode arguments will also output bam files. Additionally, the log file gets outputted which has PRUA
(percentage of reads uniquely aligned). The attribute enable allows to disable this alignment step, this is useful
for debugging the process prior step, for example, you can run quality checks on the processed fastq files
before proceeding to alignment.

"STAR" : { 
   "enable" : 1, 
   "tool" : "/opt/STAR-2.5.2b/bin/Linux_x86_64_static/STAR", 
   "reference_gene" : "GRCh37_E75", 
   "gene_path" : "/path/to/genomeDir", 
   "arguments" : "--runMode alignReads --quantMode GeneCounts --genomeLoad
LoadAndKeep --readFilesCommand zcat --runThreadN 8" 
}, 

• The process and align transformation work on each of the samples. After each sample iteration, the temporary
fastq files will be deleted to reduce storage requirements.

• Example processing:



python3 run.py data 

# --------------------------------------------------- 
# Process 
# --------------------------------------------------- 
# --------------------------------------------------- 
# Starting sample # 1 out of 1 
# --------------------------------------------------- 
# Starting sample # 1 out of 343 
curl-proxy -L -R -o ./data/tmp/SRR1568613.tgz ftp://ftp.genboree.org/exRNA-a
tlas/grp/Extracellular%20RNA%20Atlas/db/exRNA%20Repository%20-%20hg19/file/e
xRNA-atlas/exceRptPipeline_v4.6.2/KJENS1-Alzheimers_Parkinsons-2016-10-17/sa
mple_SAMPLE_1022_CONTROL_SER_fastq/CORE_RESULTS/sample_SAMPLE_1022_CONTROL_S
ER_fastq_KJENS1-Alzheimers_Parkinsons-2016-10-17_CORE_RESULTS_v4.6.2.tgz 
sh: curl-proxy: command not found 
mkdir ./data/tmp/SRR1568613 
tar -C ./data/tmp/SRR1568613 -xzf ./data/tmp/SRR1568613.tgz 
cp ./data/tmp/SRR1568613/data/readCounts_gencode_sense.txt ./data/tmp/SRR156
8613_ReadsPerGene.out.tab 
# --------------------------------------------------- 
# Starting sample # 2 out of 343 
curl-proxy -L -R -o ./data/tmp/SRR1568457.tgz ftp://ftp.genboree.org/exRNA-a
tlas/grp/Extracellular%20RNA%20Atlas/db/exRNA%20Repository%20-%20hg19/file/e
xRNA-atlas/exceRptPipeline_v4.6.2/KJENS1-Alzheimers_Parkinsons-2016-10-17/sa
mple_SAMPLE_0427_PD_CSF_fastq/CORE_RESULTS/sample_SAMPLE_0427_PD_CSF_fastq_K
JENS1-Alzheimers_Parkinsons-2016-10-17_CORE_RESULTS_v4.6.2.tgz 
sh: curl-proxy: command not found 
mkdir ./data/tmp/SRR1568457 
tar -C ./data/tmp/SRR1568457 -xzf ./data/tmp/SRR1568457.tgz 
cp ./data/tmp/SRR1568457/data/readCounts_gencode_sense.txt ./data/tmp/SRR156
8457_ReadsPerGene.out.tab 
# --------------------------------------------------- 

target: merge
• To merge gene count and/or BAM files generated from the data target, from the root project directory run the
command:

python3 run.py merge 

• The configuration files for the data step are stored in config/count-params.json. These include the parameters
for the count merge and bam merge and it's associated arguments.

• The format attribute informs if to process download, kallisto (or STAR) files. The gene counts are merged into a
TSV file and as well as a feature table based on the SRA run table. Additional STAR attributes in the JSON allow
you to specify skiprows used when processing the gene count files as well as identifying the column from the



gene matrix file to use as the column used to. There is an additional imputes attribute that allows you to impute
any column with missing data. The attributes also include an optional "filter_names" gene table used to remove
genes as well as removing false-positive genes. Finally, we can rename the feature columns before we save out
the feature table.

"count" : {
   "enable" : 1, 
   "format" : "download", 
   "skiprows" : 4, 
   "column_count" : 1, 
   "skip_samples" : ["SRR1568391"], 
   "enable_filter" : 0, 
   "filter_keep_genes" : "NM_", 
   "filter_remove_genes" : ["chrX", "chrY"], 
   "filter_names" : "/datasets/srp073813/reference/Gene_Naming.csv", 
   "run_database" : "data/raw/exRNA_Atlas_CORE_Results.csv", 
   "imputes" : ["TangleTotal"], 
   "features" : ["Run", "CONDITION", "expired_age", "BIOFLUID", "sex", "PM
I", "sn_depigmentation", "Braak score", "TangleTotal", "Plaque density", "Pl
aqueTotal"], 
   "rename" : {"CONDITION" : "Disorder", "BIOFLUID" : "Biofluid", "Braak sc
ore" : "Braak_Score", "Plaque density" : "Plaque_density"}, 
   "replace" : {"from":["Parkinson's Disease", "Alzheimer's Disease", "Cere
brospinal fluid", "Healthy Control"], "to":["Parkinson", "Alzheimer", "Cereb
rospinal", "Control"]}, 
   "output_matrix" : "data/out/gene_matrix.tsv", 
   "output_features" : "data/out/features.tsv" 
}, 

• For bam merging, which should not be enabled by default, we use the "samtools" merge feature that takes all
the BAM files and combines them into one merged BAM file.

"bam" : { 
   "enable" : 0, 
   "output" : "data/tmp/merged.bam", 
   "tool" : "/usr/local/bin/samtools", 
   "arguments" : "merge --threads 8" 
}, 

• Example processing:



python3 run.py merge 

# --------------------------------------------------- 
# Merge 
Input: SRR3438605_ReadsPerGene.out.tab 
Input: SRR3438604_ReadsPerGene.out.tab 
Output: data/out/gene_matrix.tsv data/out/features.tsv 
# Finished 
# --------------------------------------------------- 

target: normalize
• To normalize the aligned merge counts, from the root project directory run the command:

python3 run.py normalize 

• The configuration files for the data step are stored in config/normalize-params.json.

• We use a custom R script which uses the DESeq2 module to take the input merged gene counts and the
experiment features and outputs two normalized counts files. The analysis is done for all samples in the SRA run
table. The output_dir sets the output location for the normalized count matrix files. One file is the standard
normalized counts using the DESeq2 module, and the second normalized count file is after a Variable
Stabilization Transform (LRT). We also have a "max_genes" attribute that will filter the genes and removes ones
that have little to no variance across disorder versus control.

• The data JSON configuration file also holds an array of samples, a sample looks like as follows:

{ 
   "output_dir" : "data/out", 
   "DESeq2" : { 
       "Rscript" : "/opt/conda/envs/r-bio/bin/Rscript", 
       "source" : "src/data/normalize.r", 
       "input_counts" : "data/out/gene_matrix.tsv", 
       "input_features" : "data/out/features.tsv", 
       "max_genes" : 8000 
   },
   "cleanup" : 0, 
   "verbose": 1 
} 

• Example processing:



python3 run.py normalize 

# --------------------------------------------------- 
# Normalize
Rscript  src/data/normalize.r data/out/gene_matrix.tsv data/out/features.tsv 
data/out/ 
[1] "Output data/out/normalized_counts.tsv data/out/vst_transformed_counts.t
sv" 
# Finished 
# --------------------------------------------------- 

target: analysis
• To perform the analysis for the gene counts, from the root project directory run the command:

python3 run.py analysis 

• The configuration files for the data step are stored in config/analysis-params.json.

• We use a custom R script which uses the DESeq2 module to take the input merged gene counts and the
experiment features and outputs 2 sets of files for each biofluid region. Each biofluid region will compare a
disorder versus Control. This will result in a total of 4 sets of files (2 biofluid regions x 2 disorder pair
comparisons). Each output set includes a Likelihood Ratio Test (LRT) using the full and reduced model as
specified in the attributes below as well as a MA-Plot and Heatmap. The additional attributes include the
property of doing parallel processing for DESeq2.

{ 
   "output_prefix" : "data/out/%biofluid_region%", 
   "DESeq2" : { 
       "Rscript" : "/opt/conda/envs/r-bio/bin/Rscript", 
       "biofluid_regions" : ["Cerebrospinal", "Serum"], 
       "disorders" : ["Parkinson", "Alzheimer"], 
       "control" : "Control", 
       "input_counts" : "data/out/pca_normalized_counts.tsv", 
       "input_features" : "data/out/features.tsv", 
       "source" : "src/analysis/analysis.r", 
       "full" : "expired_age+sex+PMI+sn_depigmentation+Braak_Score+TangleTo
tal+Plaque_density+PlaqueTotal+Disorder", 
       "reduced" : "expired_age+sex+PMI+sn_depigmentation+Braak_Score+Tangl
eTotal+Plaque_density+PlaqueTotal", 
       "parallel" : 0 
   },
   "cleanup" : 0, 
   "verbose": 1 
} 



• Example processing:

python3 run.py analysis 

# --------------------------------------------------- 
# Analysis 
Cerebrospinal x Parkinson vs Control 
Rscript src/analysis/analysis.r data/out/Cerebrospinal/Parkinson/gene_matri
x.tsv data/out/Cerebrospinal/Parkinson/features.tsv data/out/Cerebrospinal/P
arkinson/ full=expired_age+sex+PMI+sn_depigmentation+Braak_Score+TangleTotal
+Plaque_density+PlaqueTotal+Disorder reduced=expired_age+sex+PMI+sn_depigmen
tation+Braak_Score+TangleTotal+Plaque_density+PlaqueTotal charts=1 parallel=
0 

target: visualize
• The visualize pipeline step can be invoked as follows:

python3 run.py visualize 

• The configuration files for the data step are stored in config/visualize-params.json. The output will include
multiple sets of charts: Gene Spread Variance Histogram, SRA Linear Correlation between SRA chart, MA-Plot
2x2 chart, Heat Map 2x2 chart, 2x2 Histogram, 4x4 Correlation Matrix and a Disorder Venn Diagram. Each chart
type has flexible settings to control the input and layout for the charts as shown below:



"gene_hist" : { 
   "enable" : 1, 
   "max_genes" : 8000, 
   "nbins" : 100, 
   "title" : "Distribution of Genes Based on Spread Metric: All vs Top Gene
s" 
}, 
"missing_plot" : { 
   "enable" : 1, 
   "title" : "Percentage of Missing Genes over" 
}, 
"sra_lm" : { 
   "enable" : 1, 
   "sra" : ["SRR1568567", "SRR1568584"], 
   "normalized_counts" : "data/out/normalized_counts.tsv", 
   "vst_counts" : "data/out/vst_transformed_counts.tsv", 
   "title" : "%sra% Regression Log(Norm) v VST counts" 
}, 
"ma_plot" : { 
   "enable" : 1, 
   "biofluid_regions" : ["Cerebrospinal", "Serum"], 
   "disorders" : ["Parkinson", "Alzheimer"], 
   "src_image" : "MAplot.png", 
   "title" : "MA Plot: Biofluid Region vs Disorder" 
}, 
"heat_map" : { 
   "enable" : 1, 
   "biofluid_regions" : ["Cerebrospinal", "Serum"], 
   "disorders" : ["Parkinson", "Alzheimer"], 
   "src_image" : "heatmap.png", 
   "title" : "Heat Map: Biofluid Region vs Disorder" 
}, 
"histogram" : { 
   "enable" : 1, 
   "biofluid_regions" : ["Cerebrospinal", "Serum"], 
   "disorders" : ["Parkinson", "Alzheimer"], 
   "title" : "Histograms Differential Gene Expression vs Control", 
   "ylim" : 55 
}, 
"corrmatrix" : { 
   "enable" : 1, 
   "title" : "Spearman Correlations of log2 fold gene expression" 
}, 
"venn" : { 
   "enable" : 1, 
   "biofluid_regions" : ["Cerebrospinal", "Serum"], 
   "disorders" : ["Parkinson", "Alzheimer"], 
   "pvalue_cutoff" : 0.05, 
   "title" : "Venn Diagram Disorders" 



}, 

• Example processing:

python3 run.py visualize 

# --------------------------------------------------- 
# Visualize
# Finished 
# --------------------------------------------------- 

target: qc
• The quality pipeline step can be invoked as follows:

python3 run.py qc 

• The configuration files for the data step are stored in config/qc-params.json. These include the parameters for
the output directory where the quality HTML reports will be outputted.

"outdir" : "data/out", 
"inputs" : "data/tmp", 

• For fastq files, the quality tool attribute is set to fastqc and that includes attributes to extract reports or keep
them in a zip file. To enable this quality check make sure you set the cleanup to 0 in the data configuration
pipeline as well as to disable the STAR processing, this will retain the fastq.qz files after the data pipeline step is
executed.

"fastq" : {
   "enable" : 1, 
   "tool" : "/opt/FastQC/fastqc", 
   "extract" : 1    
}, 

• For bam files, the quality tool attribute is set to picard and that includes attributes such as collecting alignment
summary metrics. To enable this quality check make sure you set the cleanup to 0 in the data configuration
pipeline and add 'TranscriptomeSAM' to the arguments for STAR which will then output BAM files that will be
retained after the data pipeline step is executed.



"bam" : { 
   "enable" : 1, 
   "tool" : "java", 
   "jar" : "/opt/picard-tools-1.88/CollectAlignmentSummaryMetrics.jar" 
}, 

• Example processing:

python3 run.py qc 

# --------------------------------------------------- 
# Quality Check 
fastqc data/tmp/out.1.fastq.gz --outdir=data/out --extract 
fastqc data/tmp/out.2.fastq.gz --outdir=data/out --extract 
java -jar /opt/picard-tools-1.88/CollectAlignmentSummaryMetrics.jar INPUT=da
ta/tmp/SRR3438604_Aligned.bam OUTPUT=data/out/SRR3438604_Aligned.bam.txt 
java -jar /opt/picard-tools-1.88/CollectAlignmentSummaryMetrics.jar INPUT=da
ta/tmp/SRR3438605_Aligned.bam OUTPUT=data/out/SRR3438605_Aligned.bam.txt 
# Finished 
# --------------------------------------------------- 

target: report
• To generate the report from the notebook, run this command:

python3 run.py report 

• The configuration files for the data step are stored in config/report-params.json.

{ 
   "tool": "jupyter", 
   "args": "nbconvert --no-input --to html --output report.html notebooks/r
eport.ipynb", 
   "verbose" : 1 
} 

target: clean
• To clean the data (remove it from the working project), from the root project directory run the command:

python3 run.py clean

target: all



• The all target will execute the following steps in sequence: data, merge, normalize, analysis and visualize. It
can be executed as follows:

python3 run.py all

Appendix

Additional EDA Analysis

Basic numerical features broken down by gender and biofluids

Data Description broken down by Gender and Clinical Diagnosis

expired_age DiseaseDuration PMI PlaqueTotal TangleTotal

count 343.000 218.000 343.000 343.000 341.000

mean 81.006 9.477 3.220 7.947 6.628

std 8.190 6.876 1.559 5.531 4.795

min 38.000 0.000 1.160 0.000 0.000

25% 76.000 5.000 2.415 1.500 3.000

50% 82.000 8.000 2.830 9.000 5.000

75% 87.000 13.000 3.500 13.000 10.500

max 99.000 30.000 12.000 15.000 15.000

Supplementary Table 1: Descriptive statistics



Distribution of reads information in SRA_run table
The SRA run table includes the transcriptome reads, reference genome reads, and transcriptome genome ratio
for each sample. Here are the distributions of those.

expired_age DiseaseDuration PMI PlaqueTotal TangleTotal

sex female male female male female male female male female male

CONDITION

Alzheimer's
Disease 80.310 81.788 7.946 6.740 2.894 3.051 13.197 12.998 12.469 11.581

Healthy Control 83.690 80.279 1.333 4.857 3.029 2.879 4.846 5.376 3.893 3.748

Parkinson's
Disease 81.535 78.984 14.947 11.049 4.221 3.516 6.285 5.746 5.506 3.758

Supplementary Table 2: Feature attributes Grouped By Gender and Condition



Tangle & Plaque Counts Distribution in Each Brain Region Broken Down By
Conditions
We chose four brain regions(Frontal, Temporal, Hippocampal, and Entorhinal) and plotted the distributions of
plaques and tangles of all three groups respectively.

Supplementary Figure 1: Distributions of reads and transcriptome genome ratio.



Supplementary Figure 2: Tangle counts in each brain region.



The plots above show that the distribution of tangles and plaques of AD group is different to other groups as
expected. However, the difference between PD and healthy control is not significant.

Distributions of the overlapping miRNA Sequences
Below shows the distributions of the overlapping miRNA sequences. It is clear that the distributions of these
sequences are significantly different between AD and PD groups in CSF samples.

Supplementary Figure 3: Plaque counts in each brain region.



Correlation between significantly regulated miRNA and numerical features
The plots below show the correlation between the significantly regulated miRNA found in the volcano plots
above and the basic numerical features we used in the DESeq model.

It appears that most of the up-regulated sequences in Cerebrospinal fluid of the Alzheimer's Disease group are
weakly positively correlated with these numerical features, especially with PlaqueTotal , TangleTotal , 
Braak score , and sn_depigmentation . And the sequences in Serum of the Parkinson's Disease group

are mostly negatively correlated. However, the correlations with numerical features are not particularly strong.

Supplementary Figure 4: Distribution of overlapping miRNA in CSF and Serum.





Supplementary Figure 5: Correlation between up-regulated miRNA and numerical features
in CSF and Serum.





Correlation between overlapping miRNA and numerical features
The plot below shows the correlation between overlapping miRNA and some basic numerical features. As
stated in the report, none of the correlations is particularly strong enough to lead to meaningful conclusions.

Supplementary Figure 6: Correlation between down-regulated miRNA and numerical
features in CSF and Serum.





Differentially Expressed miRNA in CSF of Alzheimer's Patients + Full
mRNA/Protein Mappings

Supplementary Figure 7: Correlation between overlapping miRNA and numerical features
in CSF and Serum.



miRNA Type log2FoldChange -log_pvalue

0 mir-99a Up 1.068476 2.667435

1 mir-40-3p Down -0.529650 1.180250

2 mir-92b Up 0.592280 1.129815

3 mir-27c Up 0.530398 1.123541

4 mir-548ad-5p Up 0.561702 1.001056

5 mir-34b Up 0.476389 0.742151

6 mir-338 Up 0.455333 0.704723

7 mir-548h Up 0.413335 0.651008

8 mir-101b Down -0.409032 0.649200

9 mir-40 Down -0.337495 0.647403

10 mir-34c-5p Up 0.396187 0.579773

11 mir-486a-5p Down -0.472859 0.563278

12 mir-30a-3p Up 0.371358 0.545930

Supplementary Table 3: Cerebrospinal & Alzheimer's Upregulated and Downregulated
miRNA's



mir-99a: tribbles pseudokinase 2 (TRIB2), kelch repeat and BTB domain containing 8 (KBTBD8), SWI/SNF
related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 5 (SMARCA5)

mir-40-3p: not found

mir-92b: beta-1,3-galactosyltransferase 2 (B3GALT2), mannosidase alpha class 2A member 1 (MAN2A1), F-box
and WD repeat domain containing 7 (FBXW7), neurofilament medium (NEFM), phospholipase D1 (PLD1), sortilin
related receptor 1 (SORL1)

mir-27c: not found

mir-548ad-5p: family with sequence similarity 135 member A (FAM135A), nuclear factor of activated T cells 5
(NFAT5), neuronal growth regulator 1 (NEGR1), tau tubulin kinase 2 (TTBK2), complement C3b/C4b receptor 1
(Knops blood group) (CR1)

mir-34b: insulin induced gene 1 (INSIG1), protein phosphatase 6 regulatory subunit 3 (PPP6R3), furin, paired
basic amino acid cleaving enzyme (FURIN), neuroplastin (NPTN)

mir-338: Cbl proto-oncogene (CBL), galectin like (LGALSL), RAB14, member RAS oncogene family (RAB14),
neuropilin 1 (NRP1), phosphatidylinositol binding clathrin assembly protein (PICALM)

mir-548h: CREB binding protein (CREBBP), ubiquitin conjugating enzyme E2 D1 (UBE2D1), zinc finger CCHC-
type containing 14 (ZCCHC14), neuron navigator 2 (NAV2)

mir-101b: not found

mir-40: not found

mir-34c-5p: family with sequence similarity 76 member A (FAM76A), delta like canonical Notch ligand 1 (DLL1),
MDM4, p53 regulator (MDM4), neuron navigator 1 (NAV1), neuron navigator 3 (NAV3), microtubule associated
protein tau (MAPT)

mir-486a-5p: not found

mir-30a-3p: cell division cycle 73 (CDC73), zinc finger E-box binding homeobox 2 (ZEB2), nuclear FMR1
interacting protein 2 (NUFIP2)

Differentially Expressed miRNA in CSF of Parkinson's Patients + Full
mRNA/Protein Mappings



mir-34b: insulin induced gene 1 (INSIG1), protein phosphatase 6 regulatory subunit 3 (PPP6R3), furin, paired
basic amino acid cleaving enzyme (FURIN), neuroplastin (NPTN)

mir-34c-5p: family with sequence similarity 76 member A (FAM76A), delta like canonical Notch ligand 1 (DLL1),
MDM4, p53 regulator (MDM4), neuron navigator 1 (NAV1)

mir-27c: not found

mir-434-3p: not found

mir-92b: beta-1,3-galactosyltransferase 2 (B3GALT2), mannosidase alpha class 2A member 1 (MAN2A1), F-box
and WD repeat domain containing 7 (FBXW7), neurofilament medium (NEFM)

mir-130a: gap junction protein alpha 1 (GJA1), cytoplasmic polyadenylation element binding protein 1 (CPEB1),
SKI/DACH domain containing 1 (SKIDA1), leucine rich repeat kinase 2 (LRRK2)

mir-351-5p: not found

mir-10b: cell adhesion molecule 2 (CADM2), transcription factor AP-2 gamma (TFAP2C), CCR4-NOT
transcription complex subunit 6 (CNOT6)

mir-34b-5p: teneurin transmembrane protein 1 (TENM1), ELMO domain containing 1 (ELMOD1), regulatory
factor X3 (RFX3), parkin RBR E3 ubiquitin protein ligase (PRKN)

mir-23a: zinc finger protein 99 (ZNF9), semaphorin 6D (SEMA6D), family with sequence similarity 234 member B
(FAM234B)

Differentially Expressed miRNA in Serum of Alzheimer's Patients + Full
mRNA/Protein Mappings

miRNA Type log2FoldChange -log_pvalue

0 mir-34b Up 0.722977 1.023605

1 mir-34c-5p Up 0.584796 0.776372

2 mir-27c Up 0.495344 0.764454

3 mir-434-3p Up 0.558104 0.760882

4 mir-92b Up 0.566194 0.755235

5 mir-130a Up 0.595353 0.708097

6 mir-351-5p Up 0.542760 0.692046

7 mir-10b Up 0.515659 0.655791

8 mir-34b-5p Up 0.475180 0.557489

9 mir-23a Up 0.446270 0.546405

Supplementary Table 4: Cerebrospinal & Parkinson's Upregulated and Downregulated
miRNA's



miRNA Type log2FoldChange -log_pvalue

0 mir-16 Down -1.006115 2.005127

1 mir-15a-5p Down -0.922835 1.743917

2 mir-378 Down -0.955715 1.347237

3 mir-182-5p Up 0.739354 1.097146

4 mir-23a Down -0.622807 0.955343

5 mir-186 Down -0.602617 0.944766

6 mir-92 Up 0.598591 0.902923

7 mir-25 Up 0.929064 0.866180

8 mir-10b Up 0.534783 0.743404

9 mir-22 Down -0.491724 0.670908

10 mir-210 Down -0.482772 0.657003

11 mir-144-5p Up 0.478381 0.645686

12 mir-22-3p Down -0.531189 0.576222

13 mir-1260 Down -0.365382 0.528260

Supplementary Table 5: Serum & Alzheimer's Upregulated and Downregulated miRNA's



mir-16: pappalysin 1 (PAPPA), fatty acid synthase (FASN), unc-80 homolog, NALCN channel complex subunit
(UNC80), clusterin (CLU), triggering receptor expressed on myeloid cells 1 (TREM1), neurofibromin 1 (NF1)

mir-15a-5p: pappalysin 1 (PAPPA), fatty acid synthase (FASN), unc-80 homolog, NALCN channel complex
subunit (UNC80), neuritin 1 (NRN1), neuropilin 2 (NRP2)

mir-378: ubinuclein 2 (UBN2), vestigial like family member 3 (VGLL3), M-phase specific PLK1 interacting protein
(MPLKIP)

mir-182-5p: protein kinase cAMP-activated catalytic subunit beta (PRKACB), regulator of G protein signaling 17
(RGS17), basonuclin 2 (BNC2)

mir-23a: zinc finger protein 99 (ZNF99), semaphorin 6D (SEMA6D), family with sequence similarity 234 member
B (FAM234B), neuroligin 4 X-linked (NLGN4X)

mir-186: RUN and FYVE domain containing 3 (RUFY3), zinc finger CCCH-type containing 11A (ZC3H11A), zinc
finger protein 644 (ZNF644), neuronal growth regulator 1 (NEGR1)

mir-92: beta-1,3-galactosyltransferase 2 (B3GALT2), mannosidase alpha class 2A member 1 (MAN2A1), F-box
and WD repeat domain containing 7 (FBXW7), sortilin related receptor 1 (SORL1)

mir-25: CD69 molecule (CD69), solute carrier family 12 member 5 (SLC12A5), mannosidase alpha class 2A
member 1 (MAN2A1)

mir-10b: cell adhesion molecule 2 (CADM2), transcription factor AP-2 gamma (TFAP2C), CCR4-NOT
transcription complex subunit 6 (CNOT6), brain derived neurotrophic factor (BNDF)

mir-22: glutamate metabotropic receptor 5 (GRM5), fucosyltransferase 9 (FUT9), neuroepithelial cell
transforming 1 (NET1)

mir-210: insulin like growth factor 2 (IGF2), iron-sulfur cluster assembly enzyme (ISCU), galanin receptor 2
(GALR2), brain derived neurotrophic factor (BDNF), neuronal pentraxin 1 (NPTX1)

mir-144-5p: zinc finger protein 292 (ZNF292), ATPase H+ transporting V1 subunit C1 (ATP6V1C1), HIC ZBTB
transcriptional repressor 1 (HIC1), neurotrophic receptor tyrosine kinase 2 (NTRK2), neuregulin 3 (NRG3)

mir-22-3p: glutamate metabotropic receptor 5 (GRM5), fucosyltransferase 9 (FUT9), neuroepithelial cell
transforming 1 (NET1)

mir-1260: zinc finger protein 268 (ZNF268), zinc finger protein 763 (ZNF763), cutaneous T cell lymphoma-
associated antigen 1 (CTAGE1), complement C3b/C4b receptor 1 (Knops blood group) (CR1)

Differentially Expressed miRNA in Serum of Parkinson's Patients + Full
mRNA/Protein Mappings



miRNA Type log2FoldChange -log_pvalue

0 mir-192-5p Up 1.987334 2.412864

1 mir-182-5p Up 1.106859 1.463374

2 mir-93 Up 1.104689 1.425775

3 mir-143 Down -0.875965 1.291720

4 mir-10b-5p Down -0.763093 1.205186

5 mir-144-5p Up 0.800832 1.057860

6 mir-125a Down -0.727192 0.995720

7 mir-182 Up 0.661768 0.810613

8 mir-21 Up 0.616150 0.707095

9 mir-92 Up 0.564453 0.684278

10 mir-92b Down -0.534518 0.681643

11 mir-30c-5p Up 0.590171 0.658381

12 mir-548aq-3p Up 0.550847 0.651495

13 mir-186 Up 0.574868 0.651354

14 mir-378 Up 0.611943 0.623439

15 mir-16 Up 0.575121 0.617367

16 mir-122a-5p Up 0.519159 0.600663

17 mir-101b Up 0.545156 0.594463

18 mir-122 Up 0.632374 0.589976

19 mir-10b Down -0.460216 0.582377

20 mir-223 Up 0.521058 0.570865

21 mir-2779 Down -0.415505 0.544440

Supplementary Table 6: Serum & Parkinson's Upregulated and Downregulated miRNA's



mir-192-5p: NIPA like domain containing 1 (NIPAL1), basic helix-loop-helix family member e22 (BHLHE22),
protein kinase D3 (PRKD3), neurofilament light (NEFL)

mir-182-5p: protein kinase cAMP-activated catalytic subunit beta (PRKACB), regulator of G protein signaling 17
(RGS17), basonuclin 2 (BNC2), neurocalcin delta (NCALD)

mir-93: ectonucleotide pyrophosphatase/phosphodiesterase 5 (putative) (ENPP5), FYVE and coiled-coil domain
containing 1 (FYCO1), dynein cytoplasmic 1 light intermediate chain 2 (DYNC1LI2)

mir-143: ABL proto-oncogene 2, non-receptor tyrosine kinase (ABL2), vasohibin 1 (VASH1), DENN domain
containing 1B (DENND1B)

mir-10b-5p: cell adhesion molecule 2 (CADM2), transcription factor AP-2 gamma (TFAP2C), CCR4-NOT
transcription complex subunit 6 (CNOT6), brain derived neurotrophic factor (BDNF)

mir-144-5p: zinc finger protein 292 (ZNF292), ATPase H+ transporting V1 subunit C1 (ATP6V1C1), HIC ZBTB
transcriptional repressor 1 (HIC1), neuregulin 3 (NRG3)

mir-125a: DTW domain containing 1 (DTWD1), BCL2 family apoptosis regulator BOK (BOK), BRCA1, DNA repair
associated (BRCA), neuronal vesicle trafficking associated 2

mir-182: protein kinase cAMP-activated catalytic subunit beta (PRKACB), regulator of G protein signaling 17
(RGS17), basonuclin 2 (BNC2)

mir-21: YOD1 deubiquitinase (YOD1), Fas ligand (FASLG), PR/SET domain 11 (PRDM11), neurotrophin 3 (NTF3)

mir-92: folliculin interacting protein 1 (FNIP1), CD69 molecule (CD69), G3BP stress granule assembly factor 2
(G3BP2), neurofilament medium (NEFM)

mir-92b: beta-1,3-galactosyltransferase 2 (B3GALT2), mannosidase alpha class 2A member 1 (MAN2A1), F-box
and WD repeat domain containing 7 (FBXW7), neurofilament medium (NEFM)

mir-30c-5p: twinfilin actin binding protein 1 (TWF1), UDP-GlcNAc:betaGal beta-1,3-N-
acetylglucosaminyltransferase 5 (B3GNT5), embryonic ectoderm development (EED), neural cell adhesion
molecule 1 (NCAM1), leucine rich repeat kinase 2 (LRRK2)

mir-548aq-3p: polyhomeotic homolog 3 (PHC3), CREB3 regulatory factor (CREBRF), protein tyrosine
phosphatase, receptor type K (PTPRK), synuclein alpha (SNCA)

mir-186: RUN and FYVE domain containing 3 (RUFY3), zinc finger CCCH-type containing 11A (ZC3H11A), zinc
finger protein 644 (ZNF644), neuronal growth regulator 1 (NEGR1)

mir-378: ubinuclein 2 (UBN2), vestigial like family member 3 (VGLL3), M-phase specific PLK1 interacting protein
(MPLKIP)

mir-16: pappalysin 1 (PAPPA), fatty acid synthase (FASN), unc-80 homolog, NALCN channel complex subunit
(UNC80), clusterin (CLU), triggering receptor expressed on myeloid cells 1 (TREM1), neurofibromin 1 (NF1)

mir-122a-5p: not found

mir-101b: not found



mir-122: heterogeneous nuclear ribonucleoprotein U (HNRNPU), cytoplasmic polyadenylation element binding
protein 1 (CPEB1), CD40 ligand (CD40LG)

mir-10b: cell adhesion molecule 2 (CADM2), transcription factor AP-2 gamma (TFAP2C), CCR4-NOT
transcription complex subunit 6 (CNOT6)

mir-223: F-box and WD repeat domain containing 7 (FBXW7), SP3 transcription factor (SP3), synuclein alpha
(SNCA), neuron derived neurotrophic factor (NDNF)

mir-2779: not found
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