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The Genetic Basis of Antibiotic Resistance in E. Coli

Introduction
One of the most difficult problems in drug development today is the growing number of

bacterial strains that have developed resistance to antibiotics. Due to their immunity to known

medicine, their exposure to humans can lead to infections that are impossible to cure [1].

According to the International Federation of Pharmaceutical Manufacturers & Associations

(IFPMA), by 2050, antimicrobial resistance could kill up to ten million people per year [2]. The

biological mechanism behind antibiotic resistance involves changes in bacteria at the genetic

level, through either random mutations in their own DNA or the acquisition of genetic material

from the environment [3]. Although antibiotic resistant bacteria have been studied for decades,

their whole genome sequencing has started relatively recently [4]. This study aims to investigate

the genetic factors associated with antibiotic resistance by performing a genome-wide

association study on antibiotic resistant E. Coli bacteria and comparing the results against non

antibiotic resistant E. Coli bacteria.

Enterobacteriaceae, specifically E. Coli, commonly causes infections both in healthcare

settings and communities [5]. Certain strains however have developed an especially dangerous

resistance mechanism, the ability to produce an enzyme known as extended-spectrum

beta-lactamase, or ESBL [5]. ESBL is capable of breaking down multiple types of antibiotics

such as penicillin, rendering them ineffective [5].

Data
The study is conducted using two groups of samples, one with an ESBL-enzyme

producing strain of E.Coli which is antibiotic resistant, and a non-antibiotic resistant control

group [6][7]. Sample sizes were 36 whole genomes for each group. Whole genome sequencing

data was obtained via an Illumina MiSeq sequencer and formatted as two pair-end fastq files per

sample [6][7]. The FastQ files were first piped through FastQC, a quality control program, with
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default settings for an initial summary of read quality [8]. The generated report outputs

Pass/Warn/Fail flags for various categories (e.g. Basic Statistics, Per Sequence GC Content, Per

Base Sequence, etc.) [9]. We chose to keep samples that passed the Basic Statistics check and

compared overall quality between both groups. All of our files passed this check, although there

were some differences amongst groups that may affect variant calling accuracy further down the

line. The most significant difference between the groups was the %GC content as shown in

Figure 2, with most of the ESBL producing samples having higher amounts on average

compared to the control group. This may either be a physiological phenomenon or a confounding

factor that may need to be addressed.

Figure 1: The distribution of quality scores for a single sample sorted by read length



Chen, Haider, Wu 3

Figure 2: Aggregated count of quality Pass/Fail flags between ESBL and control samples.

Methodology
Figure 3 below provides an overview of our project pipeline, starting with downloading

the raw reads and ending with our analysis from the genome wide association study and variant

annotation using SnpEff. Once the sequencing data is downloaded and assessed for quality, it is

processed using multiple bioinformatics software tools, starting with Cutadapt for adapter

trimming.

Figure 3: Project Pipeline Overview

During the sequencing process, temporary adapter sequences of nucleotides are attached

to the fragments of DNA in order to facilitate sequencing [8]. Sometimes these adapters are
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accidentally sequenced as part of the sample genome, so they need to be algorithmically

removed using tools such as Cutadapt [10]. Cutadapt was run on all 72 samples using default

parameters, in trimmed pair-end reads mode to “remove adapter sequences… from

high-throughput sequencing reads” [10]. The trimmed fastq files were piped through FastQC

again to ensure that the data still passes our quality check post-adapter trimming, which every

file did [8].

Once all files have been cleaned, the reads from each sample can be aligned into a whole

genome sequence using a program called Bowtie2 [11]. Bowtie2 takes in a pair of fastq files

from a single sample and a known reference genome to assemble the reads into a contiguous

sequence [11]. After performing alignment on each sample, 36 .sam files are produced for each

group. These .sam files are converted into a readable .bam format using samtools, a package for

manipulating .sam files. Once this is completed, the 72 .bam files are ready for variant calling

and analysis using GATK [12].

GATK is a suite of tools used for the analysis of genomic data [12]. For this study, the

HaplotypeCaller tool was used to identify Single Nucleotide Polymorphisms (SNP’s) between

each group and compare them [13]. The resulting output after GATK is an aggregated VCF file

containing the list of variants for all 72 E.Coli genomes which we then used for a genome wide

association study using the software Plink, as well as variant annotation using SnpEff to identify

variants of significance and their functional effects.

Before proceeding with the genome wide association study (GWAS), a basic principal

component analysis was conducted using Plink to determine if there are potentially meaningful

differences between the two groups. The first two principal components were calculated for each

sample and plotted in the scatterplot shown in Figure 4. It can be seen that the antibiotic-resistant

samples clustered together on the right of the graph, indicated by the points in blue. The orange

points represent samples from the control group, which appear to have much more variance. It is

unknown why the three outliers in the top left vary so significantly from the rest of the control

group, but they were retained in the study due to the sample populations being so small.

The genome wide association study was performed using a logistic regression model to

identify the SNP’s that are statistically significant between the two groups. The model computes

a p-value for each SNP indicating this level of significance. The model was tuned using the first

two principal components as covariates and by filtering out all SNPs with a genotyping rate of
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less than 60%. The genotyping rate is used as a measure of missing data, with 60% being chosen

as it was the best threshold to minimize the skew of the distribution of p-values.

Figure 4: Principal Component Analysis Results

The variant annotation and filtration was performed using snpEff and snpSift. We used

the built-in E-coli database that snpEff provided as the reference genome during annotation. This

step gave us an annotated vcf file, a succinct summary report, and a gene_name table. We could

then run snpSift on the VCF file to filter out the common variants which are present in both

groups and leave only the variants that differ between groups. Finally, We used the extractFields

command in snpSift to extract useful information from these remaining variants for further

analysis.

Results
The snpEff output consists of a comprehensive summary report, an annotated vcf file and

a gene_name table. The summary report provides us a brief overview of our variants. We have

encountered 341666 warnings in the control group and 514589 warnings in the esbl group.Since

the number of errors we encountered is relatively small compared to our datasize, we decided to

focus more on the numerous warnings. These warnings mainly consist of

ref_dose_not_match_genome error. We theorized that it may be a result of using two different

reference genomes: the original reference genome and the one provided by snpEff. It was
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unavoidable in this study as our initial reference genome was missing an essential .gff file. Our

results could significantly improve if we built our own database. Another observation is that the

variant rate of the esbl group is 1 variant every 16 bases, which is much higher than the control

group with 1 variant every 24 bases. We hypothesize that it is due to the possibility that the

ESBL group is more prone to mutations.

Besides the runtime information, the statistical data generated by snpEff illustrates that

the control and ESBL group are incredibly similar with a few variance. For both groups, the

Missense/Silent ratio is about 3 which is quite high. As this ratio increases, the more mutations

happening in our samples directly affect the amino acid it produces. This could be the reason for

E. Coli bacteria gaining resistance to antibiotics. The rest of the statistics are similar and do not

reveal how E. Coli bacterias become antibiotic resistant. Next, we applied snpSift filtration to

reduce the scope of the dataset to observe any noticeable changes.

Figure 5: Missense/Silent ratio

In this step, we passed the annotated VCF file we got from snpff to snpSift. We then

filtered them out and kept only high/moderate impact variants present in all of our ESBL

samples and absent in at least one of our control samples. Originally we had over 60,000 variants

after annotation, but with filtering we ended up with 50. We extracted their information and

counts for the ten most frequently presented Mutated Genes, each one denoted by a specific gene

ID. Their gene IDs are listed below.
[HUS2011_1899 ,   HUS2011_1904, HUS2011_1897,  HUS2011_1898, HUS2011_1900, HUS2011_1901,

HUS2011_1902,  HUS2011_1903,  HUS2011_1896,  HUS2011_1905]

We can observe that in the remaining variants the most frequent mutations are from A -> G (see

Base changes). In addition, the variants_impact_MODIFIER is quite high indicating that there
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are more variances, with greater impact, in this gene. There are also many variants identified to

have a missense variant effect, which usually resulting in a different amino acid sequence.

Figure 6: The count of base change in remaining variants

Figure 7: The count of variants associated with one of our top 10 mutated genes



Chen, Haider, Wu 8

The genome wide association study output is a table of 32,414 SNPs, each row

containing the specific base, genome location, and computed p-value. This table was filtered

using Python’s pandas package in a Jupyter Notebook to find the SNP’s that had a p-value below

the significance threshold. For the study, we initially set this threshold to 0.05. 1,598 SNPs were

identified with p-values less than this threshold. However, because these comparisons are being

tested simultaneously, the likelihood of incorrectly identifying a SNP as statistically significant

increases. In order to compensate for this, Bonferroni correction was applied, so the new

threshold was calculated by dividing the desired threshold by the number of comparisons: 0.05 /

32,414 = 1.54e-6. After filtering using this corrected threshold, it was found that 0 SNP’s had

p-values that could indicate statistical significance. The ten SNPs with the lowest p-values in the

study are shown in Figure 8.

Figure 8: The ten SNPs with the lowest computed p-values

The p-values from this table were then visualized using a QQ-plot to check if their distribution

resembles data that is normally distributed. From the plot shown in Figure 9, there appears to be

a skew of more extreme values, indicated by the longer tails at the ends. A Manhattan plot was

also produced to visualize how these p-values vary across the genome. In Figure 10, each dot

represents a single SNP, with the -log10 of the p-value on the y-axis and the genome location on
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the x-axis. None of the SNPs hit the threshold for Bonferroni correction, indicated by the

horizontal red line at the top of the plot.

Figure 9: QQ-plot of computed p-values

Figure 10: Manhattan-plot of SNPs across E.Coli genome
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Conclusion
Our study aimed to explore and identify the genetic markers that characterize antibiotic

resistance in ESBL-producing E. Coli. The project involved comprehensive processing of our

genomic data, followed by a genome wide association study and analysis of found variants and

their functional effects. Through our analysis, we noticed some observable differences through

principal component analysis and variant annotation, but the location of the specific SNPs

responsible for ESBL production is still unknown.

One of the primary limitations encountered was determining a definition for antibiotic

resistance that could be feasibly tested using a GWAS. Although ESBL production has been

proven to render E.Coli resistant to common antibiotics, there are many different physiological

mechanisms that could also be used to classify other bacterial strains as antibiotic resistant.

Another limitation was the limited sample size. This paired with the possible outliers from our

principal component analysis could have given skewed results. If the study were to be repeated it

would ideally involve hundreds, if not thousands of E.Coli samples. Time was another limiting

factor, as a single sample takes approximately 60-70 minutes to be processed from raw reads to

the Variant Call Format file needed for Plink and SnpEff. We also did not have access to a .gff

file at the beginning of the study, which is an annotation file that is meant to be paired with the

reference sequence used for alignment and variant calling. Because of this, we had to use two

different reference genomes at different stages of the pipeline, which may have influenced the

final GWAS and SnpEff outputs. In order to improve the logistic regression model, covariates

such as %GC Content and more granular SNP filtering could be implemented.

This study is a small stepping stone toward addressing the much broader problem of

antibiotic resistance. The project pipeline can be applied to any strain of bacteria with a case and

control group which can not only help identify significant genomic variants, but also their effects

on protein transcription. Understanding these markers for antibiotic resistance can better inform

scientists of how such physiological changes occur and what can be done to prevent the

emergence of new antibiotic resistant strains in the future.
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Original Project Proposal

One of the most difficult problems in drug development today is the growing number of

bacterial strains that have developed resistance to antibiotics. Because these bacteria cannot be

killed using known medications, their exposure to humans can lead to infections that are virtually

impossible to cure [1]. The biological mechanism behind antibiotic resistance involves changes

in bacteria at the genetic level, through either random mutations in their own DNA or the

acquisition of genetic material from the environment [2]. Although antibiotic resistant bacteria

have been studied for decades, their whole genome sequencing has started relatively recently.

This study aims to investigate the genetic factors associated with antibiotic resistance, and use

these findings to develop a machine learning model to predict whether a new bacterial strain has

the potential to be antibiotic resistant.

The data used in this study would include whole genome sequencing data from multiple

strains of bacteria, particularly the strains classified as threats by the CDC as of 2019 [3]. These

would be compared to the strains of their non-resistant counterparts, as well as each other for

commonalities that might characterize antibiotic resistance. We plan on using FastQC to check

the quality of the dataset and Cutadapt for adapter trimming. Afterwards, we will pipe the

processed data into Bowtie2 for read alignment and finally GATK and Snpeff for gene

annotation and analysis. With this data we will engineer features and test various machine

learning models. The project output would include a report containing the results of the

investigation and the predictive model used to classify a strain as antibiotic resistant.

The replication paper is similar to this study as high throughput sequencing data is being

processed and analyzed, however there are multiple major differences. Bacteria is the organism

being studied, and DNA is being studied rather than RNA. This is because we are more

concerned with genetic variation through SNP’s in this case, rather than gene expression levels.

Alongside this, the results of the investigation will guide the production of a machine learning

model, something that was not done in the replication paper.
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We will be studying a family of bacteria known as Enterobacteriaceae, specifically E.

Coli. This bacteria commonly causes infections both in healthcare settings and communities.

Certain strains however have developed an especially dangerous resistance mechanism, the

ability to produce an enzyme known as extended-spectrum beta-lactamase, or ESBL. ESBL is

capable of breaking down multiple types of antibiotics such as penicillin, rendering them

ineffective. Our goal is to study approximately 90 E. Coli samples and identify the genes that are

responsible for the production of this enzyme. The data was collected using whole genome

sequencing. There have been previous studies that have identified genetic mutations in other

species of antibiotic resistant bacteria, however we would like to utilize these results to produce a

machine learning model that can be used for prediction of future strains.
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