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Abstract
Alzheimer’s Disease (AD) is an irreversible, progressive neurodegenerative disorder that slowly
destroys a person's cognitive and physical abilities. The cause of AD is unclear, but is believed to
be a combination of genetic, environmental and lifestyle factors. Because the only way to definitely
diagnose AD is post mortem, the search for earlier definitive detection is crucial. One way of doing
this is by analyzing blood samples to detect biomarkers and microRNAs. A biomarker is defined as
a characteristic that is objectively measured as an indicator of normal biological processes, while
microRNAs (miRNAs) are non-coding RNA molecules that are involved in the regulation of gene
expression. Recent studies show miRNAs and biomarkers as possible tools for AD diagnosis, thus,
leading us to analyze blood miRNA data for our study. Utilizing influences from various other
studies, we examined 67 blood samples of AD and control patients through our custom genetics
pipeline in hopes of a breakthrough in understanding the pathology of the disease. We then
implemented two different statistical tests, a non-parametric hypothesis test (Wilcoxon-Mann-
Whitney Test) and a parametric hypothesis t-test (DESeq2). From these tests we were able to
isolate nine significant miRNAs to perform further analysis on its relationship and effect to AD.

Introduction

Background
Alzheimer’s Disease is an age-related neurodegenerative disease that currently affects more than
5.5 million Americans and is considered the 6th leading cause of death in the United States[1]. It is
an irreversible disease that causes declines in both mental and physical abilities as a result of
rapidly declining brain function. The pathological features of Alzheimer’s associated with the loss in
proper brain function include amyloid plaques, neurofibrillary tangles, chronic inflammation,
vascular contributions and the loss of neural connections and cell death[1]. As a result, Alzheimer’s
patients undergo symptoms that generally include confusion, difficulty speaking and severe
memory loss. The disease itself can be diagnosed at all age levels; however, it is generally more
common with individuals 65 years of age or older. At this time, current treatments can help manage
symptoms, but neither a cure nor a cause for the disease has been identified, despite the ongoing
research. What is clear, however, is that genetics, the environment, an individuals lifestyle, and age,
are factors for an Alzheimer’s diagnosis[1].
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are factors for an Alzheimer s diagnosis[1].
There are currently several biomarkers for AD that have been identified to help diagnose the
disease. With this project we make the attempt to isolate those same biomarkers, such as miRNA,
and describe in detail their impact in the biological processes of AD, within the constraints of the
data available for this project. In the end, we believe new information about the disease could be
discovered to aid in the development of new possible treatments and maybe even contribute in
identifying the exact causes of the disease. The intentions of the project are to supplement the
world's current understanding of the disease in order to help the millions that are currently affected.

Biomarkers
According to the National Institutes of Health Biomarkers Definitions Working Group, a biomarker is
defined as a characteristic that is objectively measured and evaluated as an indicator of normal
biological processes, pathogenic processes, or pharmacologic responses to a therapeutic
intervention[3]. They assist in understanding what is going on inside a living body and can help
doctors and researchers in diagnosing and monitoring diseases. Examples of biomarkers include
Pharmacodynamic or Response Biomarkers, which is a biomarker that shows whether or not an
individual has a biological response after exposure to medical or environmental agents, and
Prognostic Biomarkers, which are biomarkers that indicate the progression or recurrence of a
particular disease or condition[4].

For Alzheimer's Disease, measurements of the brain image scans, cerebrospinal fluid and blood are
common biomarkers associated with the disease as well as other neurological diseases.
Cerebrospinal Fluid and blood are both involved with identifying proteins, such as beta-amyloid and
tau, that are found in the brain[5]. AD has serious implications to the brain and overall brain function
which is why biomarkers are a useful tool in the fight against the disease as it allows medical
professionals to monitor brain changes of a patient that they themselves may not realize.

miRNA in Relation to Alzheimer's Disease
MicroRNAs (miRNAs) are non-coding RNA molecules that are involved in the regulation of gene
expression[6]. How miRNA regulates gene expression is by binding to Messenger RNA (mRNA) and
preventing mRNA from producing proteins. It is believed they play a crucial role in being able to
control metabolic and cellular pathways[6]. The role of miRNA is important in the project, not only
because our data is composed of blood samples that contain miRNA information, but the ability of
miRNA to be considered its own biomarker as well. Specifically, circulating miRNAs can be used to
differentiate between AD and other neurological diseases[7]. Looking at miRNA as biomarkers
would allow researchers to not only take note of physical observations provided by brain images,
but observations on a gene expression level more so than just the proteins involved with AD, but
the biological processes that lead the creation of such proteins in the first place.

Methods
The data utilized for this project is from SRA study SRP022043 [8]. This raw dataset includes 48
blood samples from Alzheimer’s Disease patients and 22 blood samples from control patients.
However, during our data cleaning processing we were only able to use 67 samples out of the
original 70 samples. The samples were collected using Next Generation Sequencing [9], then
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converted to fastq files. The raw fastq files were single ended strands that contained base pair
nucleotide letter representation. In order to get the data, we utilized the wget function to obtain this
data and store it in our database. wget is a computer program that retrieves content from web
servers [10]

After getting all the data, we then ran all the data files through FastQC [11]. FastQC is a quality
control tool that has a few parameters for inputs, including specifying an output path to put the
generated files. Each time FastQC runs, there are two resulting files, an html file and a .zip file. The
html file had information regarding the basic statistics, per base sequence quality, per sequence
quality scores, per base sequence content, per base GC content, per sequence GC content, per
base N content, sequence length distribution, sequence duplication levels, and overrepresented
sequences. Within the .zip files, there contains a file called summary.txt that gave us a PASS or
FAIL for each raw data file. We then extracted this flag and kept all files that had PASS in it. All 70 of
the raw data files contained PASS in the summary.txt.

Next, we ran the files through cutadapt [12], which helped clean up the reads to remove adapter
sequences. The parameters for cuptadapt included an output directory and an adapter sequence.
Cutadapt looks for the adapter sequence in the reads and removes it if it is found. We used the
standard Illumina adapter sequence of “AGATCGGAAGAGC". The adapter sequence is only used
to tell a cell where to start transcription. So, it does not contain any generic information and is an
indicator for where a sequencing read starts. The output files that we got from cutadapt were
similar to the raw data files, except the adapter sequences were removed, making them “cleaned”

These files were then run through FastQC again to make sure that the quality of reads after
removing the adapter sequences were adequate. We utilized the same method as before, by
looking at the html file and also extracting the flag from the summary.txt file of the .zip. We kept all
the files that had PASS in it. This time, we removed 3 samples that had FAIL on the first line of the
summary.txt, leaving a total of 67 samples.

We then used kallisto to get the read counts for miRNAs. kallisto utilizes a pseudo-alignment
system that maintains a high accuracy compared to other similar softwares [13]. The parameters for
kallisto include a reference index, length, and standard deviation of fragment length. We decided to
use the ensembl non-coding RNA reference file (as suggested by kallisto), and set the length to 50
(stated within the paper), and standard deviation of 10 (we also tried 20, and 30). We ultimately
used 10 because the counts between the samples were negligible. When we ran the files through
kallisto, the output directory gave us: a run_info.json, abundance.tsv, and an abundance.h5 file. The
run_info.json gave us information regarding the quantification, number of bootstraps, and program
version while the abundance.tsv file gave the results of the quantification and the h5 files gave us
the quantification along with the bootstraps.

After running kallisto, we extracted the quantification counts from each tsv file by using pandas [14]
to read all the kallisto tsv files and create a dataframe that allowed us to merge them together. We
then created a large csv file with all the non-coding RNA information for every read. Since our
project was exclusively focusing on looking at miRNA, we utilized the ensembl [15] fasta file that
was used to get the index file and filtered that to get a list of all the miRNAs. Once we got a list of
all the miRNAs, we then filtered our dataframe to only include the miRNAs to get just the relevant
information. We were then left with around 1900 miRNAs.
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Next, we used DESeq2, which performs differential gene expression analysis based on the negative
binomial distribution[16]. DESeq2 requires a count matrix (we used the csv file created from
kallisto), a reference file containing sample information (this was given with the data that we used),
and a design parameter that specifies the fold change from a specific parameter. In this case, our
parameter was GROUP, which separated the patients (alzheimer’s disease and control). We then
controlled for counts that were greater than 10 since miRNAs with counts less than that generally
have a larger variance and skew the results. We then ran DESeq2 with the default settings to
quantify the differential expression.

Alongside DESeq2, we also performed a Wilcoxon Test (as it was the original test performed in the
paper). This was a non-parametric test that involved summation of ranks[17]. We ran a for loop that
went through each row of the kallisto csv and used the wilcox.test() function within R. The
parameters for that included an X and Y, in this situation, X were the counts of Alzheimer's patients
while Y was the counts of the control patients. We also got the log2fold change of each miRNA by
getting the log2 of the mean of the Alzheimer's patients counts over the mean of the control
patients counts.

In [55]:

Figure 1. Flowchart of our Methods Pipeline

Results

Out[55]:

Image('../references/methods_flowchart.png',width=500)
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We did an Exploratory Data Analysis on the Run Table that accompanied our data in order to get a
better understanding of what we were working with. We looked for trends and inconsistencies that
may have occurred, and also any correlation between the variables (mainly focusing on age, group
(Alzheimer’s patients vs. control patients), and gender. Furthermore, we did an analysis on each of
our FastQC results and the kallisto counts alongside the DESeq2 values to get a better
understanding of the data.

The Ages of our AD patients tended to be higher compared to controls, with an average age of 70
years old, while the average age of controls was 67 years old. [Figure 2]. There were also more
females in the study in both groups [Figure 3], however the average age of the females was 63 and
the average age of males was 71.

In [42]:

Figure 2. Age of Patients in AD vs Control.

Out[42]:

Image('../references/figure_2.png')
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In [43]:

Figure 3. Gender across Alzheimer’s and Control, along with their counts.

All of the reads that we processed had a passing quality score (In Green) [Figure 4] on the first
round of FastQC. Furthermore, we also noticed that there were high number of adapter counts
when we did not remove the adapter sequence within the reads [Figure 5]. This is expected since
we didn't run Cutadapt to remove the adapter sequences.

Out[43]:

Image('../references/figure_3.png')
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Figure 4. Quality scores across all bases from a pre-cutadapt fastq file.

Figure 5. Percentage of Adapter reads.

When looking at the DESeq2 outputs, there was a large negative correlation between the
baseMean and lfcSE and a lesser negative correlation between the pvalue and the log2FoldChange
[Figure 6]. The log2FoldChange is the ratio of differences between the observed value over the
control value. The pvalue is the probablility of obtaining a result as extreme as the observed. A



3/11/2021 Alzheimers-Biomarker-Analysis - Jupyter Notebook

dsmlp-login.ucsd.edu:9340/notebooks/alzheimers_gene_analysis/notebooks/Alzheimers-Biomarker-Analysis.ipynb 8/27

lower pvalue means more significant while higher pvalues show less significants to the hypothesis
test. The baseMean is the mean of normalized counts of all samples in the distribution. The lfcSE is
the standard error that is from the log2FoldChange column.

In [72]:

Figure 6. Correlation plot of DESeq2 output.

Our DESeq2 Results showed that for all of our samples we had no significant miRNA’s, all had
p_values > 0.05 [Figure 4]. However, we noticed that around 1870 of the miRNA had a p_value of
exactly 1.0 so, we filtered for p_values that were less than 1 and found 56 miRNA’s. In the original
study, they noted that there were 56 different miRNA that they got as significant; the exact same
number as our DESeq2 p_values that did not equal exactly 1. Still, we considered our DESeq2
results as inconclusive. Continuing along our pipeline, we performed a Wilcoxon Test. Our Wilcoxon
Test results showed that there were actually 63 significant values with a p_value < 0.05 [Figure 5].
Looking at significant values from Wilcoxon Test and the insignificant values from DESeq2, we
noticed that there was an overlap between the two, meaning that our results from DESeq2 were
“correct” just not fully the same as the original research paper. From our results, we narrowed it
down to the 11 most significant values that were seen in our DESeq2 output, our Wilcoxon output,
and the original study [Figure 7].

Out[72]: <matplotlib.axes._subplots.AxesSubplot at 0x7f89e1210080>

cmap = sns.diverging_palette(230, 20, as_cmap=True)
sns.heatmap(significants[['log2FoldChange','pvalue','baseMean','lfcSE']].co
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In [6]:

Figure 7. The eleven miRNA values that overlapped between our DESeq2 output, our Wilcoxon
output, and the original study. ENST, miRNA label and HSA value for each miRNA is present.

Out[6]:

Image('../references/enst_highlighted.png')
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In [45]:

Figure 8. DESeq2 Volcano plot of pvalues.

Out[45]:

Image('../references/figure_8.png')
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In [46]:

Figure 9. Wilcox Volcano Plot of p_values.

We took our most upregulated and downregulated miRNA results from DESeq2 which were: hsa-
miR-766 (ENST00000390223.3), and hsa-miR-1248 (ENST00000629190.1) respectively [Figure 10].
We took our most upregulated and downregulated miRNA values from the Wilcoxon Test which
were: hsa-miR-6882 (ENST00000619233.1) and hsa-miR-26b (ENST00000362251.4), respectively
[Figure 11]. Showing the counts is important for comparing to controls, since each miRNA has (or
does not have) a value in both AD and controls. Analyzing the counts could give us an insight into
how these miRNA are at play when in AD patients or controls. From the boxplots, we can see that
there were a lot of counts of zero between all four of the miRNAs. Almost all of the miRNAs have an
interquartile range of 0, showing how many sample values were 0.

Out[46]:

Image('../references/figure_9.png')
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In [47]:

Figure 10. DESeq2 Boxplot of most upregulated and downregulated miRNA.

Out[47]:

Image('../references/figure_10.png')
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In [48]:

Figure 11. Wilcox Test Boxplot of most upregulated and downregulated miRNA.

For all four of our miRNA’s, we plotted their counterparts: their counts in AD versus their counts in
Control. The results here are harder to decipher, however our highest possibility is that counts of
hsa-miR-1248 are 11x as much compared to Control [Figure 12]! Also, there are no counts of hsa-

Out[48]:

Image('../references/figure_11.png')
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miR-6882 in AD while there are counts in Control [Figure 13].

In [2]:

Figure 12. Side by Side of DESeq2 Most Downregulated Alzheimer’s versus Control for
ENST00000629190.1 (hsa-miR-1248)

In [3]:

Figure 13. Side by Side of Wilcox Most Upregulated Alzheimer's versus Control for
ENST00000619233.1 (hsa-miR-6882)

Discussion
As seen on Figure 7, the control counts are nearly 4 times as large as the AD counts. This miRNA is
known for gene silencing and a lack of that gene silencing could be a factor within AD. For figure 8,
counts in AD are more than 10 times as much, leading us to conclude that it is possible that the
lack of activation of mRNA upon binding of cap-binding complexes could be another factor. In
Figure 9, there were no counts of miRNA 6882 in Alzheimer Disease, while there are counts in the

Out[2]:

Out[3]:

Image('../references/figure_12.png')

Image('../references/figure_13.png')
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control. Nonexistent counts in this miRNA leads us to believe that patients are more likely to be
diagnosed with AD. In Figure 10 we determined inconclusive findings when looking at the counts
distribution for miRNA 26B!

Within our analysis, we were able to find 11 miRNA values that overlapped between the two tests
we performed on our data. We went ahead and researched each miRNA value to obtain additional
information about them and whether they had any direct association to AD. Some common
processes seen through each miRNA value include gene silencing and regulation processes that
involved apoptosis. miRNA 6882 was the only miRNA value that was not able to find sufficient
information to draw any conclusions relating to the miRNA or to the other 11 values.

What was common among the miRNA values we obtained were associations to various forms of
cancer, such as carcinoma. miRNA 21 in particular, is responsible for numerous biological
processes and diseases from cancer to cardiovascular diseases[21]. Additional insight into the
expression of miRNA 21 found it to be upregulated in almost all types of cancer some of which
include breast cancer, colon cancer, and lung cancer. miRNA 182 and miRNA 766 are some of the
other miRNA values that have some connection to cancer development that are included in the 11
miRNA values we isolated in our results.

Using the National Center for Biotechnology Information (NCBI) website, we were able to focus on
our second miRNA value of interest, miRNA 26B. According to the report on miRNA 26B on the
NCBI website, processes associated with this particular miRNA include negative regulation, or a
blocked expression, of a defense response to a virus as well as the positive regulation, or gene
undergoing transcription, of apoptotic signaling pathways[18]. Apoptotic signaling is a process that
is programmed for cell death[30]. miRNA 26B is interesting in particular for our project because it is
also associated with the positive regulation of tau-protein kinase activity. Tau is a common protein
associated with AD through neurofibrillary tangles, which are collections of the tau protein[18].
These collections, commonly found in the neurons, block the transport system of a neuron which
damages neuron communication. Neurofibrillary tangles, through tau proteins, and the buildup of
amyloid plaques, which consists of the toxic protein beta-amyloid 42, are just some of the main
characteristics of AD[2].

Even though a lot of the miRNAs may not be directly related to AD, we believe an indirect influence
on gene expression could still exist. For example, miRNA 142, one of the 11 values we further
investigated, had functions that have been linked to severe brain injuries prediction in patients[19].
It could be possible to utilize this miRNA to detect changes within AD patient brains. Or, miRNA
182 is positively related to apoptosis. It could be that there could be an overexpression of this
miRNA in AD patients[20].

Furthermore, we realized that the paper utilized a different differential expression method compared
to what we wanted to use. We wanted to use DESeq2 as we have previously used it before, and
also factors in the entire dataset that is given. The original paper used a Wilcoxon-Mann-Whitney
test, a non parametric model that only looked at a specific miRNA. We felt that using DESeq2 is
advantageous as it considers all the different miRNAs and does not just look at an individual
miRNA. This takes into consideration all of the data, which provides a more accurate result.

Part of the limitations concerning this project include the availability of sufficient data. While the
research paper that influenced our project provided us publicly with the 70 patient sample data, it
was mentioned that additional data was utilized that’s not publically available. This prevented us
from being able to properly compare our results during various stages of the project due this
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difference. For example, if we had used the additional data, we may have been able to reproduce
the significant results by solely running DESeq2. How this affected our overall outcome can be
seen when we were only able to collect 11 miRNA values that overlapped out of a sample of over
1000 miRNA values. There was also a mention of several cognition tests, including Alzheimer
Disease Assessment Scale-cognitive subscale (ADAS-Cog), Clinical Dementia Rating (CDR),
Wechsler Memory Scale, and Mini-Mental State Exam (MMSE). None of the results of any of these
tests were publicly available for us, which could have inhibited our results and findings. We could
not have utilized these mental tests to further our results or used them as additional factors within
our analysis.

Overall, we realize how complex AD is and the need for more research to be done in order to find a
cure or definitive detection of this disease. miRNAs and other biomarkers can be a place to start,
but there are also so many other factors that can contribute to and need to be examined more.
However, we hope that the research and findings that we have done could be a starting point for
future research, especially if it involves utilizing blood based samples similar to our study.
Considering the promising outlook for using blood based data in the fight against AD, we hope that
there could be more studies done on miRNAs and its functions, leading to more possible
relationships/correlations between that and AD. If we were to do further investigation, we would like
to have more information on the cognitive tests previously mentioned and how they could
supplement the data further. Obtaining a much larger data sample size would also be something we
would want to do. But, we hope that our current findings could help contribute to existing research
on AD pathways or may lead to the beginning of novel research on this disease.
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[20] mirRNA-182 description URL: https://www.ncbi.nlm.nih.gov/gene/406958
(https://www.ncbi.nlm.nih.gov/gene/406958)

[21] miRNA-21 description URL: https://en.wikipedia.org/wiki/MIRN21
(https://en.wikipedia.org/wiki/MIRN21)

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3048316/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4053843/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4053778/
https://www.illumina.com/science/technology/next-generation-sequencing.html
https://www.gnu.org/software/wget/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://journal.embnet.org/index.php/embnetjournal/article/view/200/479
https://pachterlab.github.io/kallisto/about
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html
https://uswest.ensembl.org/index.html
https://bioconductor.org/packages/release/bioc/html/DESeq2.html
https://en.wikipedia.org/wiki/Wilcoxon_signed-rank_test
https://www.ncbi.nlm.nih.gov/gene/407017
https://pubmed.ncbi.nlm.nih.gov/32751105/
https://www.ncbi.nlm.nih.gov/gene/406958
https://en.wikipedia.org/wiki/MIRN21
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[22] mirRNA-451B description URL: https://www.ncbi.nlm.nih.gov/gene/100616273
(https://www.ncbi.nlm.nih.gov/gene/100616273)

[23] mirRNA-142 description URL: https://www.ncbi.nlm.nih.gov/gene/406934
(https://www.ncbi.nlm.nih.gov/gene/406934)

[24] miRNA LET7 Gene Group URL: https://www.genenames.org/data/genegroup/#!/group/1697
(https://www.genenames.org/data/genegroup/#!/group/1697)

[25] mirRNA-let-7b description URL: https://www.ncbi.nlm.nih.gov/gene/406884
(https://www.ncbi.nlm.nih.gov/gene/406884)

[26] mirRNA-let-7f-1 description URL: https://www.ncbi.nlm.nih.gov/gene/406888
(https://www.ncbi.nlm.nih.gov/gene/406888)

[27] mirRNA-let-7a-3 description URL: https://www.ncbi.nlm.nih.gov/gene/406883
(https://www.ncbi.nlm.nih.gov/gene/406883)

[28] mirRNA-766 description URL: https://www.ncbi.nlm.nih.gov/gene/768218
(https://www.ncbi.nlm.nih.gov/gene/768218)

[29] mirRNA-1248 description URL: https://www.ncbi.nlm.nih.gov/gene/100302143
(https://www.ncbi.nlm.nih.gov/gene/100302143)

[30] Apoptosis Definition URL: https://www.cancer.gov/publications/dictionaries/cancer-
terms/def/apoptosis (https://www.cancer.gov/publications/dictionaries/cancer-terms/def/apoptosis)

Appendix

Additional EDA

https://www.ncbi.nlm.nih.gov/gene/100616273
https://www.ncbi.nlm.nih.gov/gene/406934
https://www.genenames.org/data/genegroup/#!/group/1697
https://www.ncbi.nlm.nih.gov/gene/406884
https://www.ncbi.nlm.nih.gov/gene/406888
https://www.ncbi.nlm.nih.gov/gene/406883
https://www.ncbi.nlm.nih.gov/gene/768218
https://www.ncbi.nlm.nih.gov/gene/100302143
https://www.cancer.gov/publications/dictionaries/cancer-terms/def/apoptosis
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In [5]:

Figure 14. The SRARunTable for our dataset.

In [27]:

Figure 15. Histogram of all Patient Ages.

Out[5]:
Run Age Bases Bytes Experiment gender GROUP LibrarySelection S

0 SRR837437 77 891533900 521467001 SRX273417 female alzheimer
patient size fractionation GSM11

1 SRR837438 74 869717450 495593756 SRX273418 male alzheimer
patient size fractionation GSM11

2 SRR837439 68 758073050 441476174 SRX273419 male alzheimer
patient size fractionation GSM11

3 SRR837440 75 835484250 484958529 SRX273420 female alzheimer
patient size fractionation GSM11

4 SRR837441 74 853289150 506219095 SRX273421 male alzheimer
patient size fractionation GSM11

Out[27]: <matplotlib.axes._subplots.AxesSubplot at 0x7fb66e1c0090>

# Drop columns that have all the same value:
patients = patients.drop(['AvgSpotLen','Assay Type','BioProject','BioSample
              'DATASTORE provider','DATASTORE region','GEO_Accession (exp)'
               'LibrarySource','LibraryLayout','Organism','Platform','Relea
patients.head()

sns.countplot(x='Age', data=patients, color = 'plum')



3/11/2021 Alzheimers-Biomarker-Analysis - Jupyter Notebook

dsmlp-login.ucsd.edu:9340/notebooks/alzheimers_gene_analysis/notebooks/Alzheimers-Biomarker-Analysis.ipynb 20/27

In [12]:

Figure 16. Mean counts for Age, Bases, and Bytes by Gender.

In [13]:

Figure 17. Mean counts for Age, Bases, and Bytes by Group.

In [19]:

Figure 18. Filtered kallisto counts that aren't all 0.

Out[12]: Age Bases Bytes

gender

female 66.916667 8.302909e+08 5.038989e+08

male 71.852941 8.974714e+08 5.349193e+08

Out[13]: Age Bases Bytes

GROUP

alzheimer patient 70.333333 8.969719e+08 5.491423e+08

control 67.090909 7.886296e+08 4.531266e+08

Out[19]: SRR837437 SRR837438 SRR837439 SRR837440 SRR837441 SRR837442 SRR

target_id

ENST00000619109.1 0.166667 0.363636 0.272727 0.181818 0.363636 0.083333 0

ENST00000614083.1 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0

ENST00000614774.1 0.166667 0.363636 0.272727 0.000000 0.363636 0.000000 0

ENST00000516659.1 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0

ENST00000362512.1 0.000000 1.000000 0.000000 0.000000 0.000000 0.000000 1

5 rows × 66 columns

patients.groupby('gender').mean()

patients.groupby('GROUP').mean()

filtered_counts = pd.read_csv("../../filtered_counts.csv",index_col =0)
filtered_counts.head()
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In [63]:

Figure 19. Subset of DESeq2 Output.

In [67]:

In [71]:

Figure 20. Correlation Values of DESeq2 output.

In [ ]:

Out[63]: baseMean log2FoldChange lfcSE pvalue padj

ENST00000629190.1 1.257143 0.000005 0.001443 0.123150 1

ENST00000390223.3 1.142857 -0.000003 0.001443 0.333990 1

ENST00000627649.2 1.200000 0.000002 0.001443 0.398819 1

ENST00000615959.1 1.057143 -0.000002 0.001443 0.523176 1

ENST00000581792.1 1.057143 -0.000002 0.001443 0.523176 1

Out[71]: log2FoldChange pvalue baseMean lfcSE

log2FoldChange 1.000000 -0.642241 -0.281581 0.228181

pvalue -0.642241 1.000000 0.266532 -0.314335

baseMean -0.281581 0.266532 1.000000 -0.963809

lfcSE 0.228181 -0.314335 -0.963809 1.000000

deseq_output = pd.read_csv("../../ordered (1).csv",index_col =0)
deseq_output.head()

idx_list = ['ENST00000621981.1','ENST00000362134.1','ENST00000636285.1','EN
           'ENST00000362202.3','ENST00000362116.3','ENST00000385255.3','ENS
significants = deseq_output[deseq_output.index.isin(idx_list)]

significants[['log2FoldChange','pvalue','baseMean','lfcSE']].corr()

idx_list = ['ENST00000621981.1','ENST00000362134.1','ENST00000636285.1','EN
           'ENST00000362202.3','ENST00000362116.3','ENST00000385255.3','ENS
significants = deseq_output[deseq_output.index.isin(idx_list)]
 
significants[['log2FoldChange','pvalue','baseMean','lfcSE']].corr()
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In [7]:

Figure 21. Side by Side of DESeq2 Most Upregulated Alzheimer’s versus Control for
ENST00000390223.3 (hsa-miR-766).

In [4]:

Figure 22. Side by Side of Wilcox Most Downregulated Alzheimer's versus Control for

Out[7]:

Out[4]:

Image('../references/figure_14.png')

Image('../references/figure_15.png')
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ENST00000362251.4 (hsa-miR-26B).

Additional Discussion
Additional miRNA Information

Our first overlapped miRNA value is miRNA 21 (hsa-mir-21, MIR21). It plays a crucial role in many
biological functions and diseases such as cancer and cardiovascular disease. MIR21 also regulates
various immunological and developmental processes[21].

miRNA 451B or MIR451B is located on the chromosome 17q11.2. Similar to MIR21, MIR451B is
commonly associated with human cancers but is also responsible as a gene silencer which refers
to the downregulation of gene expression by miRNAs[22].

miRNA 142 or MIR142, has a gene ontology that associates this particular miRNAs roles to gene
silencing, negative regulation of inflammatory responses, positive regulation of neuroinflammatory
responses, and even responses to tumor necrosis factors[23]. Variations of MIR142 have also been
linked to predicting severe brain injury (SBI) in patients.

miRNA 26B or MIR26B, attributed to processes that include gene silencing by an miRNA, negative
regulation of defense response to viruses, positive regulation of apoptotic signaling pathways
(apoptotic refers to cell death), as well as positive regulation of tau-protein kinase activity[18]. Tau-
protein kinase activity is a feature of AD progression for those affected by the disease

miRNA 182 or MIR182, is similar to MIR26B in that it also has a positive regulation response to
apoptotic processes. Additional roles include gene silencing, negative regulation of epithelial cell
apoptotic processes and positive regulation of gene expression[20]. It has a chromosome location
at 7q32.2 that is most commonly associated with the most common type of cancer, carcinoma.

miRNA let-7a-3 (MIR let-7a-3), miRNA let-7b (MIR let-7B), and miRNA let-7f-1 (MIR let-7f-1) are
part of the MIRLet7 family[24]. MIR let-7a-3 and MIR let-7b both share the chromosome location
22q13.31 while MIR let-7f-1 is located at 9q22.32. MIR let-7b has processes such as negative
regulation of hydrogen peroxide-mediated programmed cell death, and positive regulation of
angiogenesis[25]. MIR let-7f-1 is associated with negative regulation of apoptotic processes and
the negative regulation of protein kinase protein B[26]. All three are associated with gene silencing
properties.

miRNA 766 (MIR766) has pathways such as gene silencing and cellular response to tumor necrosis
factor[28]. Research indicates MIR766 is closely related to other cancer related miRNAs.

miRNA 1248 (MIR1248) has pathways such as viral mRNA translation and the transportation of the
SLBP independent mature mRNA[29]. It is believed that RNA processing is also a standard
processes completed by MIR1248.

Project Decisions
Our project focus shifted from looking at gene expression data for Alzheimer's Disease
patients, to observing blood sample data of patients diagnosed with Alzheimer's Disease and a
control group. This was done in large part because of the lack of access to the databases we
initially wanted to retrieve data from
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After spending time searching for a viable replacement dataset on Recount2, we set on data
from SRA Study SRP022043 and downloaded the data onto DSMLP from the SRA Run
Selector Tool
We initially implemented the dockerfile for this project based on the dockerfile used in last
quarters replication and had hoped to implement TrimGalore as a new tool into our pipeline.
Incompatibility issues, however, led us to drop TrimGalore as tool and stick with running
Cutadapt and FastQC separately.
The Kallisto reference file was originally stored in our data file in our Github but the 
.gitignore  was hiding that file when we would pull the repo. We need it in order to run

Kallisto so we moved it to our teams directory on DSMLP.

Project Targets

all

Runs entire pipeline on all of the data. Running all  will run the full pipeline from scratch, this
does take hours and sometimes even days to run, it can be ran from scratch but is not needed to
be ran from scratch to see our results!

{ 
    "outdir": "data/report", 
    "report_in_path": "notebooks/Alzheimers-Biomarker-Analysis.ipyn
b", 
    "report_out_path": "report/Alzheimers-Biomarker-Analysis.html" 
}

test

Runs part of pipeline on a couple fastq files. Implements fastqc and kallisto. Then generates this
report!

{ 
  "test_1": "SRR837440.fastq.gz", 
  "test_2": "SRR837444.fastq.gz" 
}

data

In Progress! Gets and outputs the data and generates the report as well!

{ 
  "file_path": "/teams/DSC180A_FA20_A00/b04genetics/group_1/raw_dat
a" 
}

eda

Runs EDA process. Makes report with data and plots figures.
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{ 
    "outdir": "data/report", 
    "report_in_path": "notebooks/EDA.ipynb", 
    "report_out_path": "notebooks/EDA.html" 
}

viz

Runs Visualization process. Simply outputs all the charts and graphs used in the project.

{ 
    "outdir": "data/report", 
    "report_in_path": "notebooks/Viz.ipynb", 
    "report_out_path": "notebooks/Viz.html" 
}

analyze

Runs the Notebook used for our Analysis portion of the project. Generating the plots that are used
to explain our results.

{ 
    "outdir": "data/report", 
    "report_in_path": "notebooks/analyze.ipynb", 
    "report_out_path": "notebooks/analyze.html" 
}

Running python run.py all  will run the full pipeline from scrath, this does take hours and
sometimes even days to run, it can be ran from scratch but is not needed to be ran from scratch to
see our results! Other keywords that can be passed into the funciton are test eda data viz 
analyze . Running python run.py test  is actually the most recommended one, this gives
you the full pipeline experience on a fraction of the data, running in just a few minutes. Portions of
the code can also be ran with python run.py data  or python run.py eda  or a
combination of these: python run.py data eda  etc. We also printed steps along the way to
notify the user what is currently running in the pipeline. Our code assumes it is ran on the DSMLP
Servers! Without running on the DSMLP Servers we would not be able to access the data, which is
why it is important to be connected to the server.

Project Proposal (revised since initial submission):
For this project, our group intends to further contribute to the current research being conducted
about Alzheimer’s disease, its pathology and effect it has on those that are currently diagnosed with
the disease. Alzheimer’s is an age-related neurodegenerative disease that currently affects more
than 5.5 million Americans and is considered the 6th leading cause of death in the United States[1].
It is an irreversible disease that causes those diagnosed to experience declines in both their mental
and physical abilities as a result of abnormally rapidly declining brain function. The features of
Alzheimer’s associated with the loss in proper brain function include amyloid plaques, neurofibrillary
tangles, chronic inflammation, vascular contributions and the loss of neural connections and cell
death[1]. As a result, Alzheimer’s patients undergo symptoms that generally include confusion,
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difficulty speaking and severe memory loss. The disease itself can be diagnosed at all age levels,
however is generally more common with individuals 65 years of age or older. At this time, current
treatments can help manage symptoms, but a cure nor a cause for the disease has yet to be
identified, despite the ongoing research. What is clear, however, is that genetics, the environment,
an individuals lifestyle, and age, are factors for an Alzheimer’s diagnosis.

Rather than observing gene expression data similar to our replication project from the previous
quarter, this project focused on biomarkers commonly associated with Alzheimer's Disease and
other related diseases. According to the National Institutes of Health Biomarkers Definitions
Working Group, a biomarker is defined as a characteristic that is objectively measured and
evaluated as an indicator of normal biological processes, pathogenic processes, or pharmacologic
responses to a therapeutic intervention[6]. Observing such biomarkers assist in understanding what
is going on inside a living body and can help doctors and researchers in diagnosing diseases as
well as monitor how a persons conditions change over time.

We set out to elucidate the biomarkers that exist for Alzheimer's Disease, by observing blood
miRNA samples from a patient diagnosed with Alzheimer's and a separate control group. By doing
so, we believe new information about the disease could be discovered to aid in the development of
new possible treatments and maybe even contribute in identifying the exact causes of the disease.
The intentions of the project are to supplement the world's current understanding of the disease in
order to help the millions that are currently affected.

Similar approaches will be used in this project as seen and conducted from our previous replication
project from the previous quarter. Tools such as FastQC will play an important role in ensuring that
the data being used to conduct this research is at a standard that allows unbiased analysis to be
performed. This is similar to how we used it to ensure quality patient samples of those with a
disorder (Major Depressive Disorder, Schizophrenia, and Bipolar Disorder) and the control group
from the replication paper. DESeq2 will be a primary tool in being able to conduct differential
analysis between what would be our control group and samples with patients diagnosed with
Alzheimer’s. We are able to use much of the same project pipelines we have already created for this
new project, with room for modifications, if necessary. By having the pipeline already built, we are
able to divert more time away from building the pipeline to other areas of the project such as
testing additional test samples, interpreting our findings, and additional exploratory data analysis
(EDA).

How this project differs from our replication project begins with the focus of this new project being
on one disease rather than three. Focusing on one disease eliminates some of the complexities
involved in having to maintain three separate disorders within the project pipeline steps. Where our
samples come from will be specified once a final dataset has been decided and it will be mentioned
in our eventual report for the project.

Project Output At the conclusion of this project, we will output our results in a report styled similarly
to our replication project. The report will include our findings such as biomarkers associated with
Alzheimer's Disease that have already been discovered and potentially new information regarding
those biomarkers.

Responsibilities
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Ryan: Ryan created the Pipeline that we are using for our project so far: FastQC, Cutadapt, FastQC
(2), and Kallisto. Along with formatting the Github repo to the Cookiecutter Data Science standard.

Justin: Justin worked mainly on getting the report side of the project complete. He, alongside
Gregory, spent time researching what MicroRNA and biomarkers are to include as part of our
background. Researching additional information about Alzheimer’s Disease was also completed.

Gregory: Gregory, alongside Justin worked on the researching miRNA and biomarkers, and their
relation to AD. Furthermore, he helped research various parameters and settings for parts of the
pipeline.

All assisted in the implementation of the pipeline alongside editing/reviewing each other’s work.
This included the website as well


