
Joseph Bui

Brandon Tsui

Luigi Cheng

Professor Shannon Ellis

Professor Aaron Fraenkel

Comparison of Differential Gene Expression Analysis Tools

Abstract
RNA-Seq (named as an abbreviation of "RNA sequencing") is a technology-based

sequencing technique that uses next-generation sequencing (NGS) to reveal the presence and

quantity of RNA in a biological sample at a given moment, analyzing the continuously changing

cellular transcriptome. Differential expression analysis (DEA) takes the normalized read count

data (number of sequence reads originated from a particular gene) and performs statistical

analysis to discover quantitative changes in expression levels between experimental groups. As

technologies keep progressing and improving, there are now multiple tools that can be used to

carry out differential expression analysis. The purpose of our project is to take a closer look at

some of these tools and compare their performance to understand which tools are optimal for

DEA in different situations. Specifically, the software that we are going to focus on are:

ABSSeq1, voom.limma2, PoissonSeq3, DESeq24, NOISeq5, ttest6 , and edgeR7. We will compare

their performances by looking at parameters such as Area Under the ROC Curve (AUC), False

Discovery Rate (FDR), Type I error rate, Sensitivity, and Specificity. In this project, we

discovered that DESeq2 & edgeR performed similarly and were the overall best tools in most

metrics and datasets. However, there were some circumstances in which other tools had

advantages. When there were outliers with unusually high counts, both voom.limma & ttest

performed significantly better, while ABSSeq showed benefits in controlling Type I errors when

the number of truly differentially expressed genes was low. Overall, there was no single tool

applicable in every situation. We could only identify each tool's strengths and weaknesses and

showed circumstances where some tools were better over others.

Background
In genetic research, the understanding of transcriptomes – the set of all RNA transcripts –

is crucial for researchers to gain insight into the development of diseases, conditions, or disorders



with known genetic etiologies. The goal of the transcriptomic research is to catalog all transcript

species, including mRNAs, non-coding RNAs & small RNAs, and, more importantly, to quantify

each transcript's changing expression levels during development and under various

environmental and disease conditions. Identifying genes that are differentially expressed helps

determine which biological mechanisms could affect a disease or disorder. In the past,

researchers primarily used hybridization approaches, such as microarrays, to deduce and quantify

these transcriptomes9. Hybridization involves incubating labeled cDNA to microarrays. While

being relatively high throughput and inexpensive, it also has limitations such as reliance upon

existing knowledge about genome sequence and limited dynamic range of detection9.

Traditionally, researchers utilized microarrays to analyze genes. However, RNA-Sequencing has

recently grown in popularity. It provides much more precise measurements and has the potential

to cover a broader range of transcripts that haven't been correlated to an existing genome.

Compared with microarrays, RNA-Sequencing also has an extremely low background signal and

all at a lower cost.

With the emergence of RNA-sequencing data, countless software have been developed to

extract information from such data. To process the RNA-sequencing data, a researcher needs to

first quality check the reads produced by RNA-seq. For some instances, it is necessary to clean

the RNA-seq reads from contamination from adapters during preprocessing. Next, the cleaned

reads need to be aligned, mapping each read to a genome. Finally, the researcher analyzes the

differentially expressed genes among all the samples between experimental conditions. For each

step of this process, there are corresponding tools that can be used to help the researchers. In

every genetic study using RNA-seq data, researchers must determine which tools to use and how

to use them precisely. There is no single standardized pipeline for differential expression due to

the diversity in types of RNA data. Here, we hope to investigate how different software perform

on distinct synthetic datasets. Because DEA is the most crucial part of the pipeline for

RNA-sequencing, we want to focus the core of this project on comparing gene differential

expression tools. Overall, we are investigating the following tools:  ABSSeq1, voom.limma2,

PoissonSeq3, DESeq24, NOISeq5, ttest6 , and edgeR7. We are evaluating their performance on

Area Under the ROC Curve (AUC), False Discovery Rate (FDR), Type I error rate, Sensitivity,

and Specificity. This project's importance is to possibly help future researchers by providing



them information about which tools they could utilize for their RNA-seq research for the best

results based on the composition of the data and which accuracy metrics needed to be controlled.

Dataset
Since differentially expressed (DE) genes are determined only within a degree of

certainty in a real-life RNA-seq dataset, we decided to test the tools using simulated

post-alignment datasets. By doing so, we can control variables such as the proportion of genes

differentially expressed, the number of up and down-regulated genes, the number of outliers, and

the number of samples per condition. For a synthetic dataset, we can know with complete

certainty which genes are truly differentially expressed. Therefore, we can calculate accuracy

metrics outputted by the tools against the actual metrics. This feat would have been impossible to

accomplish in an actual experiment. We chose to create several datasets with various

combinations of differentially expressed genes and samples per condition to capture the different

types of real-life genetic data (Table 1). Thus, we can observe if specific tools performed better

when there were more or fewer differentially expressed genes.

Sim. study 𝐺
𝐷𝐸
𝑢𝑝 𝐺

𝐷𝐸
𝑑𝑜𝑤𝑛 |{g; 𝜙g = 0}| ‘Single’

outlier
fraction

‘Random’
outlier
fraction

𝐵
0
0 0 0 0 0 0

𝐵
0
1250 1,250 0 0 0 0

𝐵
625
625 625 625 0 0 0

𝐵
0
4000 4,000 0 0 0 0

𝐵
2000
2000 2,000 2,000 0 0 0

𝑃
0
0 0 0 6,250 0 0

𝑃
625
625 625 625 6,250 0 0



𝑆
0
0 0 0 0 10% 0

𝑆
625
625 625 625 0 10% 0

𝑅
0
0 0 0 0 0 5%

𝑅
625
625 625 625 0 0 5%

Table 1 The table above shows the different generated The ‘B’ represents the baseline, ‘P’ represents the Poisson,

‘S’ represents the single outlier, and ‘R’ represents the random outlier. |{g: Φg = 0}| represents the number of genes

whose counts were drawn from a Poisson distribution. In each simulated study, there are different numbers of

differentially expressed genes between the 2 conditions which will be explained more thoroughly below.

In all simulated studies, there are 12,500 total genes and 2, 5, & 10 samples between 2

conditions, denoted by S1 and S2. The simulated studies (first column) have superscripts and

subscripts. The superscript represents the number of upregulated DE genes ( ) and the𝐺
𝐷𝐸
𝑢𝑝

subscript represents the number of downregulated DE genes ( ) in the second condition (S2)𝐺
𝐷𝐸
𝑑𝑜𝑤𝑛

compared to the first condition (S1). The baseline, single outlier, and random outlier have counts

generated from the Negative Binomial distribution, whereas Poisson is generated from the

Poisson distribution. The ‘single’ outlier fraction is the fraction of genes in a selected single

sample where the corresponding count is multiplied with a factor between 5 and 10 — ‘random’

outlier fraction is similar but with a randomly selected sample. Real-life data are usually very

messy and often prove to be more challenging than plain synthetic datasets. Hence, we decided

to add conditions such as the Poisson distribution, single and random fractions in order to

emulate real-life data’s unpredictability and test each tool against different circumstances.

Methods

Creating the Synthetic Data
We used compcodeR10 to investigate the different tools by first creating the synthetic data

using the built-in function, generateSyntheticData11. For the distinct 11 simulated datasets, we

specified the parameters: `n.vars` = 12,500, `samples.per.cond` = 2, 5, or 10, `dispersions` = #

|{g; 𝜙g = 0}| column in Figure 1. To produce the fraction of differentially expressed genes that is



upregulated in S2 compared to S1, `fraction.upregulated` = the ratios shown in Figure 1 (i.e. 0.5

for ). For the single outlier fraction datasets, we specified `single.outlier.high.prob` = 0.05𝐵
625
625

(fraction of single outlier has unusually high counts) and `single.outlier.low.prob` = 0.05

(fraction of single outlier has unusually low counts). As for the random outlier fraction datasets,

we specified `random.outlier.high.prob` = 0.025 (fraction of random outliers with unusually high

counts) and `random.outlier.low.prob` = 0.025 (fraction of random outliers with unusually low

counts). For each dataset, we generated 10 different versions since each are randomly generated

from different distributions in order to capture the variance in performance of each tool.

Performing DEA
For performing tools supported by compcodeR, we used the built-in function called

`runDiffExp` where we specify the `result.extent` parameter as: DESeq2, edgeR, NOISeq,

voom.limma, or ttest. ABSSeq and PoissonSeq, which are not as commonly used, were not

supported by compcodeR and needed to be run separately. For both tools, the count matrix was

extracted from the compcodeR object for each dataset and labeled to distinguish between

conditions based on the number of samples per condition. Both were then run using default

parameters, and genes were labeled 1 or 0 based on a cutoff value of 0.05 for adjusted p-value.

Tool Normalization Method Statistical Method

ABSSeq1 ● Qtotal
○ “qtotal assesses the

influence of DE on
data structure to
normalize the data.”1

● Uses absolute counts difference
between 2 groups

● Utilizes Negative binomial
distribution and moderating
fold-change according to
heterogeneity of dispersion across
expression level

voom.limma2 ● Trimmed Means of
M-values (TMM)

● Applies voom transformation then
uses t-test

● Voom precision weights unlock
linear model analysis tools for read
counts

○ Fits linear model to
expression data for each



gene

PoissonSeq3 ● Novel normalization
using goodness of fit
statistic and maximum
likelihood estimations
over multiple
iterations12

● Poisson goodness-of-fit statistic
● Calculates a core statistic on the

basis of a Poisson log-linear model
● Estimates the false discovery date

using a modified version of the
permutation plug-in method

DESeq24 ● Counts are divided by
geometric mean for
each gene across all
samples

● Estimates the variance-mean
dependence in count data using
Negative Binomial Distribution

● Uses Wald test to perform
differential gene expression

NOISeq5 ● Trimmed Means of
M-values (TMM)

● Performs quality control of count
data

● Normalization & filter low-counts
● Models noise distribution of count

changes by contrasting fold-change
differences & absolute expression
differences for all features in all
samples in same condition

ttest6 ● Trimmed Means of
M-values (TMM)

● Uses edgeR package to perform
differential expression analysis

● Compares 2 conditions using t-test,
applied to normalized counts

edgeR7 ● Trimmed Means of
M-values (TMM)

● Based on Negative Binomial
Distributions, including empirical
Bayes estimation, exact tests,
generalized linear models, and
quasi-likelihood tests

● Implements genewise exact tests for
differences in the means between 2
conditions of negative-binomially
distributed counts8

Table 2 The table above shows the normalization methods of the 7 tools that we are exploring with an explanation to

how the tools perform differential gene expressions analysis in our project.



Creating the metrics for comparison
After running differential analysis using each tool on every dataset, we found different

results depending on each specific tool’s output (e.g., ABSSeq’s output included variance and

fold change among others for each gene). To simplify the results, we chose to use the adjusted

p-value with a cutoff value of 0.05 to predict DE genes. The compcodeR data objects also

included labels for the true DE genes, which we appended to the results in order to calculate

statistical metrics for comparison and analysis. Using these labels and predictions, we were able

to calculate the overall accuracy (percentage of genes correctly classified) of each tool on each

dataset and more complex statistics such as AUC, FDR, specificity, and sensitivity. We chose

only to calculate Type I Error Rate (False Positive Rate) on the datasets with zero differentially

expressed genes.

Once we calculated each metric on each dataset, we combined the results into two

matrices, separating the datasets with zero differentially expressed genes ( , , , and ) into𝐵
0
0 𝑃

0
0 𝑆

0
0 𝑅

0
0

their own matrices due to them having different statistics. Using these matrices, we made

boxplots for each dataset and statistic combination (i.e. AUC and ),  grouping samples per𝐵
625
625

condition in the x-axis and tool by color, and aggregating together the dataset version.

Performing DEA on Real Life Data
In addition to analyzing the synthetic datasets' results, we also analyzed a real-life dataset

from the last quarter. This dataset analyzed RNA sequencing on brain tissues of different brain

regions to find similarities in molecular changes that might exist in three psychiatric disorders.

The dataset extracted genes from post-mortem brains of patients who suffered Schizophrenia

(SZ),  Major Depressive Disorder (MDD), and Bipolar Disorder (BPD). In order to compare the

genes of each disease to a healthy brain's genes, the dataset also extracted genes from a control

group, where patients did not suffer any psychiatric disorder.

In this project, we utilized the count matrix post-cleaning and alignment obtained from

last quarter to perform differential gene expression analysis with each tool mentioned in this

report. To do so, we first preprocessed the dataset by pairing each psychiatric disorders' genes

with the control's genes. Hence, we ended up with three pairs of datasets: SZ-Control,

MDD-Control, and BPD-Control. We then used annotations of age at death and brain pH to



predict whether each gene was differentially expressed or not using each individual tool. Like we

did with synthetic datasets, genes were labeled 1 or 0 based on a cutoff value of 0.05 for each

tool's adjusted p-value.

Results

Exploratory Analysis of the Tools

Timing of the Tools

Figure 1 The figure above shows the duration for each tool on each individual synthetic dataset with 2 samples per

condition.

Figure 2 The figure above shows the duration for each tool on each individual synthetic dataset with 5 samples per

condition.



Figure 3 The figure above shows the duration for each tool on each individual synthetic dataset with 10 samples per

condition.

Based on the three graphs, it is portrayed that as the number of samples per condition

increases from 2, 5, and 10, the duration of the tools also increases in all synthetic datasets. This

is reasonable as it requires more time for tools to perform their analysis when there are more

samples per condition and thus more overall data. More specifically, DESeq2 and NOISeq

require the most time to perform their analyses which could be explained by the process of how

they execute their differential gene expression analysis compared to the other tools. DESeq2

performs an internal normalization for each gene across all samples using a geometric mean and

then is divided by the mean. In addition, DESeq2 uses shrinkage estimation for dispersions &

fold changes, so a dispersion value is estimated for each gene which could contribute to why it

takes a long period of time15. Similarly, NOISeq creates a noise distribution of count changes by

comparing the number of reads per gene in all samples with all the same conditions. It then uses

the distribution to assess whether the change in count number is most likely a noise or truly DE

gene16.  Hence, it takes a longer duration to complete than other tools in which they use standard

normalization methods (i.e., Trimmed Mean of M-values) or don’t use a noise distribution to

predict whether a gene is DE or not. Additionally, for both tools, they filter low-counts from their

DEA, which could also contribute to why they take longer to perform than the other tools that

don’t filter out low-counts during normalization.

Overall Trends



Figures 4a and 4b The figures above shows boxplots of the values of AUC on and respectively. In𝐵
2000
2000 𝐵

0
4000

both, AUC rises significantly when samples per condition rises but the values in Figure 4a are both greater and less

variable than in Figure 4b though the number of total genes differentially expressed are the same.

Across all datasets and tools, several trends seemed to be universal. For one, in almost

every single graph outside of specific statistics on , performance increased significantly𝐵
0
4000

with the increase in samples per condition.  In Figure 4a, we see a clear difference in every tool’s

average values (except ABSSeq) with around a 30% increase in AUC between 2 samples per

condition and 10 in the rest of the tools. This increase is seen in the greatest magnitude when

looking at sensitivity, which indicates that increasing the samples per condition increases a tool's

ability to correctly classify truly DE genes. In general, these results are primarily intuitive as

more samples per condition mean more data that each tool can use to identify genes.

One other trend we found was the effect of the proportion of up and down-regulated

genes. In our experiment we set up our data to examine this in two different instances: between

and and between and . Interestingly, the results between and𝐵
625
625 𝐵

0
1250 𝐵

2000
2000 𝐵

0
4000 𝐵

625
625 𝐵

0
1250

were nearly identical in almost every statistic. On the other hand, there was a huge disparity

across the board between and datasets. In Figure 4b we not only see around a 10%𝐵
2000
2000 𝐵

0
4000

decrease in AUC compared to Figure 4a, but in almost every case, the variance is greater, and the

results are less consistent across dataset versions. This indicates that an uneven number of up and

downregulated negatively impacts the accuracy of results when the difference between them is

greater. One possible reason for this is that most of the tool normalization factors do not assume

such an imbalanced distribution, leading to more false positives. Real-life RNA data is rarely



built like in which ⅓ of the genes are all upregulated, so it stands to reason that the tools𝐵
0
4000

would have a more challenging time distinguishing between DE genes in this situation.

For the full set of graphs on each statistic and dataset, please see the appendix at the end

of the report.

Area under the ROC Curve (AUC)

Figures 5a and 5b The figures above shows boxplots of the values of AUC on and respectively.𝐵
625
625 𝑃

625
625

The ROC curve is a popular graphical tool for comparing the performance of multiple

classifiers. The name “ROC'' is an acronym for receiver operating characteristics, which comes

from communications theory. The overall performance of a classifier is given by the area under

the ROC curve (AUC). So, the larger the AUC, the better the classifier. We could observe that

DESeq2, edgeR, voom.limma, ttest and PoissonSeq have fairly similar AUC results, having a

difference that maxes out at 0.1 depending on the dataset being analyzed. ABSSeq performed the

worst across all datasets, resulting in AUC lower than 0.65 even with the datasets with 10

samples per condition. This makes ABSSeq an inferior tool to use if AUC is an important metric

to take into account while working for a project, as it will only produce poor or worthless AUC

results.

Across the tools that performed well, edgeR excelled in datasets with the most samples

per condition excluding those in and . In these two datasets, DESeq2 and voom.limma𝑆
625
625 𝑅

625
625

performed far better. However, when there were fewer samples per condition, DESeq2 produces

the best AUC results for most datasets. It is worth noting that PoissonSeq performed worse than

the other tools, even in the dataset. This is surprising, since PoissonSeq performs differential𝑃
625
625



gene expression analysis using a Poisson log-linear model. Also, the AUC of all the tools

performs less well when performed on the single and random outlier dataset.

Type I Error Rate

Figures 6a and 6b The figures above shows boxplots of the values of Type I Error Rate on and respectively𝑃
0
0 𝑆

0
0

which both show a clear difference in rank between ABSSeq and the other tools.

Type I Error Rate, or False Positive Rate, calculates the proportion of genes incorrectly

identified as differentially expressed by dividing the number of false positives by the total

number of non-differentially expressed genes. This metric was calculated on the datasets with

zero truly differentially expressed genes that were meant to emulate circumstances where

differentially expressed genes were expected to be rare. Thus, false positives would need to be

controlled. ABSSeq performs the best in this metric in particular, as it has very low Type I Error

rates compared to the rest of the tools. This could indicate that ABSSeq is more useful when

there are fewer differentially expressed genes, since it has a higher threshold for classification.

Most tools average below 10% false positive rate, which is an acceptable threshold, yet there

were still some note trends. Like sensitivity, samples per condition did not have as drastic of an

effect on performance as it did with other tools. In some cases, the data with larger samples per

condition had higher average false positive rates. Also, PoissonSeq was the most unstable

amongst the tools, as it performed with high variance in different datasets and had the highest

rank across almost every dataset. On the contrary, voom.limma and ttest had low variances and

performed better on the datasets with outliers ( and ) compared to DESeq2and EdgeR,𝑆
0
0 𝑅

0
0

which ranked better only on .𝑃
0
0



Accuracy

Figures 7a and 7b The figures above shows boxplots of the values of Accuracy on and respectively.𝐵
2000
2000 𝐵

0
4000

In general, DESeq2 and edgeR would perform similarly, in terms of accuracy, in all

datasets (including the Poisson dataset), except one differentiating point is how DESeq2 would

not perform nearly as well as edgeR when there are more genes upregulated in condition 2

compared to condition 1. As shown in the left graph above (Figure 7a), DESeq2’s accuracy

would fall short of edgeR about ~0.02, proving that edgeR is a better statistic than DESeq2 when

accounting for accuracy of predicting truly DE genes, but DESeq2 would also be a viable tool.

However, in the right graph above (Figure 7b), DESeq2’s accuracy cannot compare to edgeR as

it performs worse than almost all tools when there is an uneven distribution of genes upregulated

in condition 2 compared to condition 1. This discrepancy could be due to the fact that DESeq2’s

normalization method uses the geometric mean of the genes of the samples in which the tool

does not take into account how a sample could have more upregulated/downregulated genes than

the other condition.

Figures 8a and 8b The figures above shows boxplots of the values of Accuracy on and respectively.𝑆
625
625 𝑅

625
625



It is worth noting that while ABSSeq did not perform well on the baseline & Poisson

generated datasets, ABSSeq performed better than almost all tools when handling datasets with a

single outlier or random outlier with unusually high counts. As shown in the left graph above

(Figure 8a), ABSSeq would perform the best when there were 2 or 5 samples per condition, but

would produce subpar results when there are 10 samples per condition. Based on the other

metrics, the previous trend would show that as the number of samples per condition increases,

the more the metric would increase. In this case, however, ABSSeq is lower-ranking than the

other tools with the most number of samples per condition, reinforcing the idea that this tool is

substandard for DEA, as it can only perform better than other tools when there are only 2 or 5

samples per condition. Further, in the graph on the right (Figure 8b), ABSSeq performs the best

when there are 2 or 5 samples per condition, but is outperformed by both ttest and voom.limma

when there are random outliers. So, voom.limma or ttest should be utilized in the real life setting

instead of ABSSeq because outliers are usually random in a real-life dataset. Researchers

typically work with datasets that contain greater than 10 samples per condition for more precise

results, so these findings prove that ABSSeq is only correct when there are a few samples per

condition which are not realistic.

False Discovery Rate

Figures 9a and 9b The figures above shows boxplots of the values of False Discovery Rate on and𝐵
625
625 𝐵

2000
2000

respectively.



Figures 10a and 10b The figures above shows boxplots of the values of False Discovery Rate on and𝑆
625
625 𝑅

625
625

respectively.

In all graphs, DESeq2, edgeR, voom.limma, and ttest, all rank around 0.5 for false

discovery rate with a small variance, which means that these tools are good at predicting whether

a gene is differentially expressed. When the differentially expressed genes were regulated in

different directions, increasing the number of DE genes from 1,250 to 4000 (i.e., → ),𝐵
625
625 𝐵

2000
2000

FDR would be controlled and decreased (Figures 9a & 9b). On the other hand, for instances

where DE genes were regulated in the same directions (i.e., → ) had no influence on𝐵
0
1250 𝐵

0
4000

the control for FDR; it did not increase or decrease. However, there is a similar trend occurring

here where DESeq2 and edgeR will perform better than voom.limma & ttest except in cases

where there is an outlier (Figures 10a & 10b). This strengthens the fact that voom.limma & ttest

are better tools when there are outliers with abnormally high counts.

In all synthetic datasets, ABSSeq has a high false discovery rate which means that it

doesn’t perform nearly as well as the other tools in terms of predicting whether a gene is truly

differentially expressed. Furthermore, almost all tools portray low variance in all graphs, except

for ABSSeq, which demonstrates how ABSSeq may not be performing analysis correctly most of

the time because of how spread out the data points are from the mean. In addition to the graphs

portraying the other metrics, it seems as if ABSSeq performs the worst compared to the other

tools. This is reasonable as ABSSeq is a new RNA-Seq analysis tool that has recently emerged14.

Similar to ABSSeq, PoissonSeq doesn’t perform as well as the other tools (DESeq2,

edgeR, voom.limma, & ttest) as it received False Discovery Rates higher than 0.5, but still

performed better than ABSSeq. However, there is a unique trend here where the FDR would



decrease as the number of samples increased for PoissonSeq. This makes sense as PoissonSeq

uses a log-linear model to calculate a score statistic for differential gene expression, so the more

samples the model has, the better the tool would perform. Consequently, it doesn’t perform as

well on the Poisson distributed synthetic dataset, which is surprising because PoissonSeq

performs differential gene expression analysis using a Poisson log-linear model.

Sensitivity and Specificity

Figures 11a and 11b The figures above shows boxplots of the values of Sensitivity on and respectively.𝑃
625
625 𝑅

625
625

Figures 11a and 11b look at sensitivity, which measures the tools' ability to correctly

identify the truly differentially expressed genes. Sensitivity is calculated by dividing the number

of genes correctly identified as DE by the total number of predictions of DE genes. As with most

other statistics, the best performing tool overall was DESeq2, with edgeR close behind. Again,

we saw better sensitivity performance with greater samples per condition, and in general, the

difference between the tools was significantly smaller in the datasets with 10 samples per

condition. In all datasets,  all of the tools (except ABSSeq) had results typically being within

0.05 of each other. However, this was not the case for the dataset, which had more𝑅
625
625

significant disparities between tools ranks. Unlike in our other graphs, voom.limma and ttest did

not show a significant relative increase in performance in the datasets with outliers. However, we

did see a stronger performance with PoissonSeq on the dataset compared to the other𝑃
625
625

datasets in which it ranked on the lower half of the tools. Overall, there were no trends seen in

the sensitivity graphs that were not already depicted in previous graphs, which gauge total

performance and reliability, such as AUC.



Figures 12a and 12b The figures above shows boxplots of the values of Specificity on and respectively.𝐵
625
625 𝐵

0
4000

Specificity is a measure of how well each tool correctly identifies non-differentially

expressed genes. Specificity is calculated by dividing the number of truly non-differentially

expressed genes by the total number of predicted non-differentially expressed genes.

Unsurprisingly, ABSSeq was by far the best tool in this metric. As we have seen previously,

ABSSeq typically classified genes as non-differentially expressed at a much higher rate than

other tools. In almost every dataset, the average specificity from ABSSeq was between 0.97 and

1, especially with greater samples per condition. Outside of ABSSeq, each tool's performance

was very comparable in most cases, only different by an average of 0.005 between them. Also,

PoissonSeq was noticeably worse compared to the rest of the tools. Interestingly, unlike some of

the other statistics, outside of ABSSeq and, to a lesser extent, edgeR, there was no increase in

performance with an increase in samples per condition. This means that increasing the number of

samples won't significantly affect specificity in most cases. In fact, for the dataset, the𝐵
0
4000

performance actually worsened with the increase of number of samples, which could be due to

normalization methods as mentioned earlier.

Again we saw a noticeable increase in performance of voom.limma and ttest in the

datasets with outliers compared to DESeq2, edgeR, and PoissonSeq. However, much like the

accuracy graphs, DESeq2 and edgeR had higher ranks in specificity for the datasets.𝑃
625
625

Overall, it seems like DESeq2 and edgeR are the clear choices to use when sensitivity is

significant to control. Still, in cases where researchers need to be sure that genes are not

differentially expressed, ABSSeq may be a viable option. Even in the data where most genes



were differentially expressed, ABSSeq controlled specificity the best and seems to be the most

useful when the true number of differentially expressed genes is lower.

Real Life Data
Using the RNA-Seq data on the three psychiatric disorders (schizophrenia, bipolar

disorder, and major depressive disorder) from last quarter, we also performed these tools on the

gene matrix count we generated the previous quarter.

Figure 13 The figure above shows boxplots of the number of genes of Schizophrenia patients that each tool yielded

as differentially expressed.



Figures 14a, 14b, 14c. The figure above shows venn diagrams that represent the overlap among the set of DE genes

found by different methods in the Schizophrenia section.



First, we compared the number of DE genes found by each tool (Figure 13). Depending

on the psychiatric disease, the actual number differed, but we could see a general trend of ttest

and voom.limma being the highest, while ABSSeq had the fewest among all diseases. It can also

be noted that DESeq2, edgeR, ttest and voom.limma had very similar results on all diseases, so it

is hard to make conclusions about which genes performed better than others since we don’t know

the true DE genes. The results produced here correlate to the results found in the simulated

datasets where DESeq2 and edgeR would perform similarly, whereas voom.limma and ttest

would also function similarly. Although voom.limma & ttest identified more DE genes here, our

findings with the simulated datasets show that DESeq2 and edgeR should be more precise in

their statistical analysis of finding truly DE genes.

Then, we studied the overlap of genes classified as differentially expressed among the

tools (Figure 14). We have noticed that tools that used negative binomial distribution (i.e.,

DESeq2, edgeR, ttest, and voom.limma) shared the most similar results (Figure 14a) in which

they identified the same 2,731 genes DE. For most of the datasets, more than half of the gene

results yielded by such tools were classified as DE. On the other hand, we could see a large

discrepancy between tools that did not use negative binomial distribution. In particular,

PoissonSeq and ABSSeq tend to classify genes to be DE that most other tools refuted. As we

mentioned earlier, we do not know the actual parameters of the real-life dataset. Hence, we are

unable to guarantee which genes are truly DE, and can only note the similarities and differences

between the results of our tools.

Discussion

Generally, across all graphs, it can be observed that as sample size increases, so does the

accuracy, which makes sense as the more samples we have per condition, the more data we have

to conclude from. Additionally, we observed that DESeq2 and edgeR perform roughly the same

in cases where there is a ratio upregulated/down-regulated in both samples (i.e., , ,𝐵
625
625 𝐵

2000
2000

etc.). This makes sense, since both tools are very similar in that they both assume that no genes

are differentially expressed. However, for cases where more genes are upregulated in one

condition than the other (i.e., ), edgeR would typically perform better.  As mentioned prior,𝐵
0
4000

DESeq uses a “geometric” normalization strategy. In contrast, edgeR uses a weighted mean of



log ratios-based method, which means both normalize using size/normalization factors. There is

a possibility that edgeR’s normalization method performs better when there is an uneven

distribution of upregulated/downregulated genes.

Moreover, it seems that in all graphs where there are no outliers with randomized counts,

DESeq2 and edgeR perform better than the other tools, but for cases where there are outliers

(random & single), voom.limma and ttest would perform better than these two tools. However, it

was interesting to see that edgeR would perform worse than DESeq2 in cases where there are

outliers because edgeR is known to be a software that can handle random outliers. In all cases, it

looks like voom.limma and ttest would perform the same, which could be explained by the fact

that they use the ttest to perform differential gene expression, but voom.limma performs better

since it doesn’t use the same process of DEA as ttest. Voom.limma uses voom transformation

from the limma package, then a linear model for all gene expression. This is more thorough in

contrast with ttest's, which just performs DEA after normalization.

According to the findings for all metrics, PoissonSeq did not perform well on the Poisson

simulated dataset, which is surprising because we assumed that the Poisson log-linear model for

the tool would predict the true DE genes from counts drawn from a Poisson distribution.

However, we believe that PoissonSeq may not have performed nearly as well as we thought

because we generated 12,500 genes, but only 6,250 were drawn from the Poisson distribution.

So, we concluded that PoissonSeq's Poisson log-linear model's method would only perform well

on the Poisson distribution only if almost all or most of the counts were drawn from the Poisson

distribution. Overall it is not surprising that PoissonSeq did not do very well as it is a relatively

old tool that is not regularly used and utilizes unconventional normalization methods. Therefore,

the methods used by edgeR & DESeq2 may be better for DEA regardless of the distribution of

the counts.

As mentioned prior, ABSSeq performed relatively poorly across all metrics even though

it seems like a reliable tool that uses absolute count differences between 2 conditions. It is

interesting to note that this method is a brand new approach by researchers as DEA is usually

performed based on a distribution. In its poor performance, it could be that it used qtotal for

normalization instead of Trimmed Means of M-values like most of the other tools did.

PoissonSeq also did relatively poorly, and it too used a different normalization method unique to

that tool. It could be that normalization has a more significant effect on the results, especially



since ABSSeq was similar to DESeq2 and edgeR in statistical methods as they all use a negative

binomial distribution. Given that this tool is new, there should be more thorough research on

ABSSeq on real-life or distinct synthetic datasets to see if it will continue to perform poorly or if

this investigation is just a fluke. Although this tool doesn’t utilize methods that have been the

norm, it is still important to investigate how this tool performs as it has potential in DEA.

In all metrics shown in Appendix, NOISeq was not included as an investigation because

the outputs of NOISeq on the synthetic data did not include p-values of each gene. We cannot

make conclusions about significant differences. As a result, we could not make inferences about

how NOISeq performs for DEA, but this could be something further studied by performing

separate, independent research for this tool.

Another limitation to our study is that we used simulated data in which we cannot control

for covariates of our samples, which many of our tools use to implement their models for

performing DEA. For instance, DESeq2 allows users to build full models or reduced models for

DEA. Still, our simulated datasets do not specify the gender or age of our samples, so we cannot

use covariates as functions of our model, which could have produced different results. This is

one major problem of our research as real-life datasets usually have information about the

samples used for analysis, so our results reflect what is produced by the percent of aligned reads

and do not consider the possible confounding variables.

Conclusion
As expected, no one software performed better than the others in all of the metrics we

measured, further proving that researchers need to be particular when choosing what tool to use

in a given study. As more general and all-encompassing statistics, the results on AUC and

accuracy show that DESeq2 and edgeR are solid choices for most studies. However, if runtime is

a major factor, as can be the case, as RNA extraction becomes cheaper and more available,

edgeR may be the better choice since, on average, it took many factors less time (~2-3 minutes)

than DESeq2. Other tools such as voom.limma and ttest performed exceptionally well on

datasets generated with the Poisson distribution instead of the negative binomial distribution,

which is used to simulate variation in the input data. This could indicate that it may be better to

use these tools when the data is known to have similar variability. Finally, ABSSeq, which was

by far the worst in almost all other circumstances, proved to be the best in terms of False Positive



Rate in the datasets with zero differentially expressed genes. This shows that ABSSeq could be

more valuable when the expected number of differentially expressed genes in a study is low

since it is more selective when differentiating between genes, leading to lower false positives.

Across all experiments, one trend that we noticed was that an increase in samples per

condition drastically increased every tool's performance in every statistic. While in a given

experiment, it is not always feasible or practical to increase the number of samples, we can still

prove how much more accurate results can be when the number of samples is increased.

Specificity appeared to be the most affected by samples per condition, with the average

specificity across tools almost doubling between 2 and 10 samples. There was still a noticeable

difference in other statistics, often increasing by close to 50% with a sample size of 10 compared

to 2.

Overall while our research found similar results to previous studies in the past13, there is

still much more that can be explored in this area especially as it continues to grow and be

improved upon. In our research, we only used default parameters for most of the tools to perform

differential expression analysis as a starting point. For example, DESeq2, we utilized a Wald test

to perform statistical analysis. For further investigation, more research should be performed on

how the tools would perform if the parameters were tuned differently from what was discussed

here since some tools may have parameters that are documented to perform better in particular

situations that we simulated in our synthetic data. For instance, next time, we can delve deeper

into how the results would alter if we utilized a Likelihood Ratio Test instead. In addition, our

findings were primarily observational as it is difficult to quantify and understand why exactly

different software produce varying results based on the complexity of the statistical methods

used across tools. The cleanliness of the synthetic data also needs to be considered when thinking

about the results because real-life RNA sequencing data is much messier in practice, with many

steps being required to even get to differential expression, each with its variability that can affect

results. While we used the random and single outlier functions to attempt to simulate this idea, it

may not necessarily translate the same way in practice. It would be preferable to test against even

more types of diverse real-life datasets to validate our results. Finally, there are, of course,

dozens of other software that could be tested against. Still, we believe that the tools we chose

represented an excellent mixture of those commonly used in other studies and some that take



different statistical approaches to observe how their use affects the results and helps guide

decisions in the future on which tools to use.
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Appendix



Figures 15a, 15b, 15c, 15d, 15e, 15f, 15g. The figure above shows the results of AUC on all the synthetic datasets .

Figures 16a, 16b, 16c, 16d, 16e, 16f, 16g. The figure above shows the results of Accuracy on all the synthetic
datasets .



Figures 17a, 17b, 17c, 17d, 17e, 17f, 17g. The figure above shows the results of FDR on all the synthetic datasets .



Figures 18a, 18b, 18c, 18d, 18e, 18f, 18g. The figure above shows the results of Sensitivity on all the synthetic
datasets .





Figures 19a, 19b, 19c, 19d, 19e, 19f, 19g. The figure above shows the results of Specificity on all the synthetic
datasets .

Figures 20a, 20b, 20c, 20d. The figure above shows the results of False Positive Rate, or Type I Error Rate, on all

the synthetic datasets .



Figure 21. The figure above shows boxplots of the number of genes of Bipolar Disease patients that each tool

yielded as differentially expressed.



Figures 22a, 22b, 22c . The figure above shows venn diagrams that represent the overlap among the set of DE genes

found by different methods in the Bipolar Disorder section.



Figure 23. The figure above shows boxplots of the number of genes of Major Depressive Disorder patients that each

tool yielded as differentially expressed.



Figures 24a, 24b, 24c . The figure above shows venn diagrams that represent the overlap among the set of DE genes

found by different methods in the Major Depressive Disorder section.


