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Abstract

As data scientists, we are often driven toward those
domains which generate vast amounts of data. High-
energy physics is no exception. The Large Hadron Col-
lider (LHC) alone produces around 90 petabytes of data
per year (roughly 240 terabytes per day). As such, there
are thousands upon thousands of researchers combing
through the LHC’s particle interactions to draw conclu-
sions. But, there exists one major difficulty in doing so:
the colliders themselves only have instruments that can
detect physical quantities (energies, momentums, and the
like). The LHC simulates particle collisions that result
in a spray of subatomic particles called jets. Considering
the many categories of jets (Higgs boson, singly charmed
quarks, etc.), classification of jets must be conducted out-
side of the LHC by researchers and their algorithms.

We implement multiple multiclass classifiers (CNN,
GNN, ENN) to discriminate between six types of jets
which may occur. While a similar classifier exists at the
LHC, the ceiling for improvement extends higher with
each advancement in machine learning- deep neural net-
work architecture being the most recent. In implement-
ing our own neural network, we strive to achieve a higher
level of model performance.

1 Introduction

In order for there to be study of subatomic particles,
and indeed for any knowledge to be gained about the
quantum world at all, physicists must use particle collid-
ers. The Large Hadron Collider (LHC) at CERN produces
data on the order of fifty petabytes a year (expected to in-
crease further with newer updates to the collider), making
high energy physics (HEP) data very appealing for data
scientists like ourselves. These devices accelerate oppos-
ing beams of protons along a track until they collide with
velocities just shy of the speed of light. The impact then
forces each proton in the collision to scatter into the sub-

atomic, elementary particles which compose it. This re-
sulting spray of quarks, leptons, and bosons decay in a
cone-shaped pattern referred to as a jet.

One of the limitations of particle colliders lies in the
fact that there does not currently exist a magical device
capable of simply detecting the presence of specific vari-
eties of particles. Any determination of particle type and
trajectory must be extrapolated from the detector’s phys-
ical measurements. As each research team working with
the data has a separate goal, whether it be to investigate
the potential conditions of the early universe or the na-
ture of the Higgs field and nature of matter as a whole,
they will want to classify different types of particle jets.
Drawing on past work [1] creating a neural network clas-
sifier to detect the presence of Higgs boson jets, we set
out to create a multiclass classifier for six categories of
jets representing different decay patterns of elementary
particles.

The data collected represents fully simulated LHC
collision events, released by the CMS Collaboration on
the CERN Open Data portal [2]. These provided simu-
lations allow for a more intrinsic, realistic comparison of
machine learning methods on high-energy physics experi-
ments. Considering our goal is to distinguish six different
categories of particle jets from proton-proton collisions
(H→bb, QCD→b, QCD→bb, QCD→c, QCD→cc, and
QCD other), we particularly focus on the features repre-
senting jets (Fig 1).

Our dataset then provides metrics concerning the jet
overall, individual tracks of particles within that jet, and
any secondary vertices (locations from which particle
tracks originate which are not the point of collision)
which may be present. In total, there are 172 features
for us to pick from when doing our analysis, of which 74
are specifically about the jet as a whole. Some key fea-
tures that we are concerned with include number of tracks
in a jet, the angles which define the physical morphology
of the jet, number of secondary vertices present, and the



distance between the primary vertex and any secondary
vertices present.
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Figure 1. Visual representation of particle jets

2 Method

In our initial exploration, we used a convolutional
neural network developed by the CMS Collaboration as
a basis for creating a H→bb jet classifier of our own.
Our replication followed similar model architecture to the
original but with some slight variations. The final model
uses 48 track features for up to 60 charged particles to
draw conclusions. As this classifier was fairly competent
at discriminating between those jets which contained a
H→bb decay and those that did not, we adapted this to be
our first multi class classifier.

This model utilizes the Conv1D layer of Keras,
adding multiple 1D convolutional layers. Essentially,
we are applying the Deep Sets [3] architecture to jets,
known as the particle-flow network [4] approach. After
batch normalization [5] on the input data, the features are
passed to 3 separate one-dimensional convolution layers
which build upon each other sequentially. The number of
nodes in each layer are 64, 32, and 32, respectively. The
outputs of these nodes are average pooled and then sent
to a hidden dense layer with 100 nodes. This is finally
passed to a final fully connected layer with 2 nodes which
classifies the jet with a softmax activation function. All
layers before this had ReLU [6] activations. As a base-
line, we compare this against a naive, fully-connected,
dense neural network. We refrain from using this archi-
tecture to make a final model with, as these kinds of fully
connected neural networks are prone to overfitting.

Performing multi class classification is hindered often
by the imbalance in class representation in the data. This
is very much the case with our work, as should be evident
from the distribution of class representation from our ex-
ploratory data analysis (Fig 2), as well as the results of

the convolutional model prior to class balancing (Fig 3).

Figure 2. Distribution of class representation in our
dataset

To correct this, balanced class weights were calcu-
lated following the formula below:

wi = number of jets

number of classes · number of jets in class i

With the inclusion of these weights applied to each
class of particle jets that we concern ourselves with, the
model greatly increases its performance (Fig 4).

In addition to modifying our previous model, we
sought to investigate whether different model architec-
tures would be more appropriate for our task. To more
robustly determine the best architecture for multi classifi-
cation on this dataset, we looked to other kinds of neural
networks. We continued to tune our convolutional neural
network (CNN) model, but upon further investigation, we
decided to compare this model against an implementation
of a graph neural network (GNN) [7].

The GNN model that we are extending to implement a
multiclass classification feature is an interaction network
to model the particle-particle interactions. The model
takes in 48 track features and utilizes batch normalization
layers to help stabilize the training. The GNN we im-
plemented contains 3 update functions and 3 aggregation
functions. Each update and aggregation function pair will
make up the process of a single graph network (GN) block
including: edge block, node block, and global block. The
edge block is used to update the edge features from the in-
put and receiver nodes. The node block is used to update
the edges and the global block is used to set the output
nodes.
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Figure 3. ROC Curves for models before class weighting

3 Results

We successfully added a multiclass classification fea-
ture to two deep learning models: 1 dimensional convolu-
tional neural network (Conv1d) and graph neural network
(GNN), producing predictions that classify each of the 6
different categories of jets. As a baseline when training
the models on only one training file while also neglect-
ing the skewed distribution of data, we can identify poor
performances by the models.

For the Dense and Conv1d models, we noticed major
improvements from previously unfavorable classification
performances after feeding the models multiple training
files and balancing the class weights. The largest im-
provement can be identified as the Higgs boson jet, im-

proving from 86.5% to 96.5%.
Regarding the GNN, the baseline model without the

jets performs fairly well without accounting for the class
weights. Upon trying to improve its performance, using
class weights proved to be difficult. Although weights
were calculated identically for the Dense and Conv1d
models, incorporating class weights in the GNN did not
significantly affect performance. This feature is still be-
ing tested for improvement and will be resolved using
more resources in the future.

4 Conclusion

Across the 3 models, the jet category with the most
data had the best performances from all the models. For
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Figure 4. ROC Curves for models after class weighting

instance, the Higgs boson had an AUC of 96.5%, along
with a higher percentage of data points compared to the
others. This further shows the hurdle caused by the im-
balance in data across the 6 jet classes. Although Higgs
boson also didn’t have too much representation in the data
its unique quality that outshined the other jet classes is
what we hypothesize causes us to be able to classify it
with high accuracy.

Discriminating between the different jets is already
a difficult task. While the Higgs boson has more distin-
guishable features, other jets have close similarities, like
the two charmed quarks with the two bottom quarks and
the single charmed quarks with the single bottom quarks.
These minimal differences most likely contribute to the
poor classification performances on top of the lack of

data.
Understanding the inner workings of new neural net-

works was a major difficulty we faced. In order to debug
the code for the GNN model, we required research and
mentorship. Even so, some issues, such as the lack of sig-
nificant improvement when implementing class weights
for the model, were left unresolved for the time being.

In the future, we would have liked to implement an
Equivariant Neural Network (ENN). ENNs are similar to
graph networks, with the additional feature of respecting
the symmetry in physics, a very important characteristic
in particle jet classification. However, ENNs are not as
widely used as CNNs or GNNs, resulting in fewer re-
sources to reference for implementation. Given a larger
time frame, we would like to compare a baseline ENN to



our existing models.
Our goal was to explore deep learning multiclassifi-

cation techniques for classifying 6 different categories of
particle jets, comparing several possible baseline models
for jet tagging. By building a multi classifier, we simplify
the process from creating individual classifiers for each
jet to one large model. In doing so, we make an already
tedious task more efficient. This project can be used as a
stepping stone for future projects in the intricate world of
particle physics.
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