
Pu
bl

ic
at

io
n

do
i

Pr
ep

ri
n

t
do

i

*correspondence: dbdesai@ucsd.edu

AUTOBRICK: A system for end-to-end automation of building point
labels to Brick turtle files

Preprint, compiledMarch 7, 2021

Devanshu Desai ID 1∗and Advitya Gemawat ID 2†

1Halicoglu Data Science Institute, University of California at San Diego
2Halicoglu Data Science Institute, University of California at San Diego

Abstract
BRICK is a schema for representing various building equipment, including but not limited to, HVAC air han-
dling units and carbon dioxide sensors in different rooms. While the schema is a clear step up over the current
state-of-the-art, its potential is severely hindered because it is not backwards compatible. This means that con-
verting CSV files storing building data to a BRICK-compatible data format is a cumbersome and imperfect
process as different systems use different conventions to denote the same systems. This conversion usually
required human involvement until now. AUTOBRICK is a software tool that automates this conversion with
minimal human intervention and provides an order of magnitude greater speed up (90x) over the current state
of the art.

1 Introduction

Today, several commercial buildings have sought to lever-
age the power of cyber-physical systems for optimal energy
consumption, planned facility maintenance, machine learning
(ML) applications, etc., to augment user experience. However,
their data collection / ETL methodologies dont conform to a
uniform schema to enable buildings to interact with each other
or streamline the process of analytics and ML at scale. The
US building industry suffers a loss of $1.5B / year due to the
lack of interoperable warehousing between different buildings
[1]. Brick offers a comprehensive schema to represent arbitrary
buildings metadata, build programmatic platforms for commer-
cial buildings, improve interoperability between different build-
ings, and pave the way for well-defined ways of analyses re-
lated to planned maintenance and machine learning, etc. [1].

Converting arbitrary metadata schema to Brick (i.e., ’Brickifica-
tion’) is a slow process bogged down by manual interventions
into partially-automated processes and grunt work. This pro-
cess involves custom data transformations, object-relationship
definitions, and manually plugging intermediate results into var-
ious heterogeneous frameworks to get a Turtle file parseable
by Brick. A Turtle file is a data format that expresses data
in a RDF model which can be used to store graph-like info
for relationships between different entities, in this case, build-
ing sub-systems and sensors. Different kinds of building point
label (metadata string) formats that sabotage the notion of a
one-size fits all solution further intensify these challenges. Ad-
ditionally, this is also motivated by real-life use cases such as
the COVID-19 global pandemic, where the public safety regula-
tions in indoor environments (classrooms, offices, etc.) remain
a massively unsolved research question and challenge at scale.

2 Background

The traditional Brickification workflow involves:

1. an open-source Excel-like tool called OpenRefine,
where users need to perform manual data transforma-
tions [2],

2. a Reconciliation API, to infer the class of specific ob-
jects in terms of Bricks vocabulary [3],

3. Entity-relationship definitions in a .txt file, to utilize in
the turtle file [4], and

4. a tool called Brick Builder to convert the processed
data into its turtle file [5].

As symbolized in Figure 1, the data transformations and most
of the API injections and integrations need to be manually done
by the user. The BrickBuilder tool is the only component to au-
tomate the last part of this workflow. We recognize the research
and practical utility of the frameworks already created for use
in the old Brickification workload. We dont seek to reinvent the
wheel here but address automation, acceleration, and scalability
improvements on top of these existing systems.

Figure 1: Traditional pre-existing Brickification workflow as
per the tutorial in [2]

https://doi.org/
https://doi.org/
https://orcid.org/0000-0000-0000-0001
https://orcid.org/0000-0000-0000-0002

Preprint – AUTOBRICK: A system for end-to-end automation of building point labels to Brick turtle files 2

3 Our Framework

Figure 2: The proposed workflow through AUTOBRICK

AUTOBRICK is an end-to-end system for automating and ac-
celerating the conversion of point labels into turtle files with
Brick terminology, which can be visualized, queried, and uti-
lized by the Brick programming platform. As displayed in Fig-
ure 2, the tool takes a configuration file where users can declar-
atively specify all details about their data and workload (related
to data location, point label format details, and additional pars-
ing details). AUTOBRICK automates all needed data transfor-
mations to pre-process the point labels and extract relevant in-
formation of various units/sensors and categories related to spe-
cific building objects. AUTOBRICK utilizes pre-written / pre-
loaded standard ER/RDF specifications and existing APIs to in-
ject and stitch them on the pre-processed data as per the original
sequence of steps followed for Brickification. We recognize the
research and practical utility of the frameworks already created
for use in the old Brickification workload and address automa-
tion, acceleration, and scalability improvements on top of the
existing implementations.

AUTOBRICK allows for flexibility in using arbitrary CSV files
and chosen/specified point label formats. With the project, we
give the power in the users hands for them to decide the ap-
propriate dataset parsing/preprocessing strategies, rather than
making unverified assumptions about point label structures or
utilizing unreliable custom static analysis or auto-generation
techniques. AUTOBRICK has already "brickified" 41 point
label datasets of various buildings in UCSDs Engineering De-
partment, reducing the need for human intervention to a matter
of minutes. Initial experiments and demos have already show-
cased Autobrickify reducing 10-15 mins of manual grunt work
as part of "brickifying" one dataset (as part of the tutorial in
[2]) to a matter of <10 seconds, achieving orders-of-magnitude
(over 90x) speed-ups and scalability!

4 Methods
We use a combination of python and shell scripts to execute
the workload in terms of the core logic to parse the point labels
and loading and injecting pre-existing APIs at different stages
of the process. To automate data transformations, we use the
pandas module to load the data in memory and leverage the sup-
plied configurations to perform data manipulations with in-built
functions provided by the module to identify objects/pieces of
equipment such as AHUs, Zones, VAVs, and their correspond-
ing class types.

Utilizing shell, we write some custom scripts to clone the APIs,
load them in the execution environment, and call them accord-
ing to their instructions to supply the pre-processed data to
their API function calls automatically. Because modules such
as pandas are pre-installed in a standard python environment,
the tool doesnt have any unique dependencies. It just needs
to rely on the brick-builder APIs dependencies (i.e., two mod-
ules, brickschema and rdflib). The lack of dependencies further
makes the tool lightweight for smooth usage. The requirements
are directly taken (and hence can even be updated) from the
loaded APIs themselves, making it seamless to piggyback on
top of the APIs made for Brickification.

Figure 3: We can also use the Brick Viewer tool [5] to eyeball
the relationship graph of the building sub-systems.

Our validation process involves both automated and manual as-
pects. Since we don’t have any target files to compare our
outputs with, we use domain experts working under our men-
tor. Domain experts carefully go through the generated turtle
files and verify if the outputs match their expectations. The
automated component involves running some automated test
queries on the generated files to ensure that the graphical model
can be parsed error-free, and weve showcased some of such
queries in one of our demos as well.

5 Work Extensions

One of the biggest challenges faced in the Brickification work-
flow is the predictions of Brick Classes by the Reconciliation
API, which have only been around 30% accurate [2]. The Rec-
onciliation API uses an extensive key-value pair dictionary to
extract and attach relevant ontology for a sensor abbreviation in
a point label, but the API isnt comprehensive. Ultimately, the
turtle files need to be precisely correct for effective ETL and An-
alytics utilization. To mitigate this, we also formulated scripts
to extract additional key-value pairs from Johnson Controls doc-
umentation to update the API and get more accurate predictions.
However, this process of incorporating all key-value pairs may
never be fully comprehensive and is subject to future updates.
On the bright side, AUTOBRICK directly uses the latest ver-

Preprint – AUTOBRICK: A system for end-to-end automation of building point labels to Brick turtle files 3

sion of the API, automatically reflecting better results as the
API improves.

The second part of augmenting the tools robustness relates to
dealing with point label values with an unequal number of splits
with the specified delimiters. In our current implementation,
we assume the point labels split into a uniform number of ele-
ments. For point labels that split into fewer values, we consider
these point-labels invalid (as we did encounter spurious point
label values during our testing). Filtering out these point-labels
renders the remaining values invalid. During the preprocessing
stage, we drop rows with any null values. In other words, we
treat point labels with the maximum number of splits possible
in the dataset as the only legitimate kind of point label value for
that dataset. Dealing with diverse but correct formats of point
labels in a single dataset is an open research question needing
collaboration with domain experts and is left to future work.

Finally, we also implemented a virtual reality front end to inter-
act and query with the automatically generated turtle files. The
environment is set up as a scene on a platform called ARENA
[6]. We set up a server that listens for events and user interac-
tions with the 3D objects in ARENA and translates those inter-
actions into queries performed on the BRICK-compatible build-
ing information. This environment allows us to map physical
spaces into equivalent virtual ones.

6 Results and Conclusion

AUTOBRICK automates and accelerates a painfully manual
process, thereby empowering building management and ven-
dors to truly realize the power of data-driven applications and
advanced analytics to augment user experience in commercial
buildings. AUTOBRICK also gives rise to the potential of
representing building sub-systems as virtual spaces to reduce
the need for engineers to physically climb into the building’s
HVAC system equipment and virtually observe and interact
with sensor setpoints. To truly reap the benefits of AUTO-
BRICK, the workflow and use case coverage need to be con-
tinually examined by domain experts and industry practitioners
to ensure the tool meets their needs at all times. This paper aims
to set the foundation for tangibly realizing smart buildings and
adopt technological advancements moving forward.

References

[1] Balaji et al. Brick: Towards a unified metadata schema for
buildings. 2016.

[2] gtfierro225. Making a brick model with openrefine brick-
builder, Oct 2020. URL https://www.youtube.com/
watch?v=LKcXMvrxXzE.

[3] BrickSchema. Brickschema/reconciliation-api.
URL https://github.com/BrickSchema/
reconciliation-api.

[4] Gtfierro. gtfierro/brick-builder. URL https://github.
com/gtfierro/brick-builder.

[5] URL https://viewer.brickschema.org/.
[6] Conix-Center. conix-center/arena-core. URL https://

github.com/conix-center/ARENA-core.

https://www.youtube.com/watch?v=LKcXMvrxXzE
https://www.youtube.com/watch?v=LKcXMvrxXzE
https://github.com/BrickSchema/reconciliation-api
https://github.com/BrickSchema/reconciliation-api
https://github.com/gtfierro/brick-builder
https://github.com/gtfierro/brick-builder
https://viewer.brickschema.org/
https://github.com/conix-center/ARENA-core
https://github.com/conix-center/ARENA-core

	Introduction
	Background
	Our Framework
	Methods
	Work Extensions
	Results and Conclusion

