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Abstract

In genomics we are often faced with the task to identify genes correlated with a specific

disease among a large number of candidate gene pools. One approach is to apply a

hypothesis test to every individual gene. For this model to work, we need to adjust for

additional variance caused by unknown confounding factors. We also need to control the

level of error rate since the naive approach of setting common significance level results in a

large number of false positives. In this paper we will introduce a robust version of this

method primarily using estimations of the empirical null distribution and controlling false

discovery rate (FDR). A leukemia dataset is used to demonstrate that the empirical null

distribution, one estimated from observing the data first, provides a better fit of the

theoretical null distribution. Furthermore, we will compare and contrast the result with

unsupervised classification methods such as k-Means and the Gaussian Mixture Model.

Introduction

In genetic research, we are often interested in searching for significant genes that are

correlated with a certain type of disease from a large pool of candidates. This is known as the

genome-wide association studies (GWAS). To do this, often two approaches are used. The first

approach involves applying statistical tests to every single gene. To do this, we must adjust for

additional variances, caused by unknown confounding factors,  in the data empirically.

Furthermore, we must control the level of error rate, namely the number of false positives.

Normally, a naive approach, such as setting the significance level ɑ to 0.05, will suffice when the

number of samples is small. However, when we have large numbers of sample genes, such as

10,000 unique genes, we end up having a large number of false positives due to randomness.

Therefore, a multiple testing using an empirical null distribution that adjusts to unknown factors

in the data empirically combined with thresholding the false discovery rate will suffice to

provide us with accurate results. A second approach is the unsupervised clustering method. One

problem with such an approach is that the data often do not have obviously separable clusters.
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However, in this study, we will apply the method to compare it with the multiple testing

approach.

The multiple testing method is achieved through simultaneously conducting a large

number of hypothesis tests between the control and experimental groups on each individual gene.

With each hypothesis test’s t-statistics recorded, we can search through the data for anomalies

and identify genes that might be correlated with the disease of our interest. Notably, we will use

both a theoretical null distribution, N(0,1),  and an empirical null distribution that adjusts to the

data empirically. We hypothesize that the empirical null distribution will provide a better fit for

the data as well as more accurate results than the theoretical null distribution. For the clustering

methods, we will mainly use k-Means as well as the Gaussian Mixture Models.

In this paper, we will apply the methods with a dataset on leukemia studies. This dataset,

collected by Harvard Professor of Pediatrics, Todd Golub, consists of the gene expressions of

more than six thousand different genes from a mixture sample of seventy-two patients with either

acute myeloid leukemia (AML) or acute lymphoblastic leukemia (ALL). Our task is to identify

genes that differentiate the two types of leukemia. The original dataset was separated into a

training set and a testing set for model building purposes. We will use both an empirical null

distribution as well as a theoretical null distribution; however, we hypothesize that the empirical

null distribution would provide more accurate results than the theoretical null distribution. This is

because as our data is skewed, a theoretical null distribution will not represent our data well;

instead an empirical null distribution, one that is obtained from first observing the data and

estimating the fraction of each component of the mixture model’s distribution, can better

represent our data and give more accurate results. Furthermore, after computing the t-statistics,

we will threshold by controlling the false discovery rate (FDR).

To test the effects of the multiple testing analysis, we will also apply machine learning

models to the same dataset. Since our data is unlabeled, we will use unsupervised classification

models such as k-Means and the Gaussian Mixture model. We will compare and contrast the

results from the clustering models to those obtained from multiple testing analysis. We

hypothesize that naive classification models fall short when using large scale data.

Theory and Methods

Quantile Transformation
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After some exploratory data analysis on the leukemia dataset, we discovered that the two

groups, patients with AML and patients with ALL, have different variances across the dataset.

This appears to be an issue for our hypothesis testing procedure, as the t-test function in R

applies Welch’s t-test using approximation to the degrees of freedom in case of unequal

variances between two groups. Since the degrees of freedom varies among samples, we must

apply a quantile transformation on the t-statistics in order to obtain uniform distribution across

our data.

To do this we found the areas (or probabilities) of each t statistic and their respective z

scores in a normal distribution. We used the R function pt() to get the areas. The pt() function

takes in a t-statistic and the number of degrees of freedom and returns the area below that t-value

to the upper-tail. We wanted to find the lower-tail areas so we used 1 - pt() and input our set of

t-scores and respective degrees of freedom for each score. Then we used the qnorm function to

get the corresponding z scores for each area. The qnorm function takes the lower-tailed area and

returns the corresponding z-value, hence why we wanted the lower-tailed areas from pt. After we

input our areas we are now left with a normal distribution of z-scores that will allow us to use the

empirical null distribution.

Mixture Model

We will use a two-class mixture model for our study. This is a simplification of the

problem. In reality, a gene can be expressive in one of the two types of leukemia, expressive in

both, and expressive in neither. However, for the purpose of our study here, we will use a

simplified model by assuming that there are only two classes- genes that are expressed

differently in the two types of leukemia and those that are expressed the same way. We will

estimate the mixture model by estimating the fraction of true negatives. To do so, we assume that

the data has two sets, S0 and SA, where S0 denotes all true negatives and SA denotes all true

positives. In our dataset, S0 represents all genes that are uncorrelated with differentiating AML

from ALL while SA represents those genes that correlate. Furthermore, we define f0(z) and fA(z)

to be the probability distribution of  S0 and SA respectively. We will estimate the fraction p0 of the

number of true negatives over the number of samples so that the data distribution:

𝑓(𝑡) =  𝑝
0
𝑓

0
(𝑧) +  (1 −𝑝

0
)𝑓

𝐴
(𝑧)

(1)



4

is close to the  the scaled density, within an interval l0 around the null distribution mean,𝑝
0
𝑓

0
(𝑧)

𝝁0.

Notably, Efron et al. (2001) discusses that such application of the empirical null

distribution must reach the following two requirements:

1. The number of tests, N, must be large.

2. A large majority of the tests must be within the null set, S0.

Error Metrics

We will use false discovery rate as our threshold metric for the statistical parametric map.

The false discovery rate is defined as the rate of type I errors, the ratio between the number of

false positives and the number of predicted positives. For our study, we set the level of threshold

z and define FP(z) and TP(z) to be the number of false positives and the number of true positives

respectively under the threshold u. We will compute the false discovery rate under threshold u as

the following:

]. (2)𝐹𝐷𝑅(𝑧) =  𝐸[ 𝐹𝑃(𝑧)
𝐹𝑃(𝑧) + 𝑇𝑃(𝑧)

We aim to control the threshold u to lower the false discovery rate. Notably, when u is

large, we have fewer number of false positives, leading to a lowered FDR; however, increasing

the threshold z also leads to increased false negatives. Ideally, we want to achieve a set FDR with

the minimum level of threshold. To do this, we will first set a significance level ɑ for the FDR

and then calculate the FDR for different levels of z and select the minimum z that satisfies the

significance level of FDR. To put this in formula, we want to calculate

.𝑚𝑖𝑛
𝑢
𝐹𝐷𝑅(𝑧) ≤ α

(3)
Compared to other thresholding criteria such as the family-wise error rate (FWER),

which controls the rate of false positives among all samples, the FDR only controls the rate of

false positives among the positives and therefore is more permissive of false positives by

definition (Schwartzman et al., 2009). Since our goal is to identify the genes correlated with

differentiating the AML from ALL, FDR is preferable as it allows some false positives as long as

there are way more true positives.

To get a better understanding of our result, we will also look at the true positive rate

(TPR) and the false positive rate (FPR). The TPR measures the rate between the number of true
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positives (TP) and the number of true positives plus the number of false negatives (FN). It is

formally written as the following:

]. (4)𝑇𝑃𝑅(𝑧) =  𝐸[ 𝑇𝑃(𝑧)
𝑇𝑃(𝑧) + 𝐹𝑁(𝑧)

The FPR is calculated as the rate between the number of false positives (FP) and the

number of false positives and true negatives (TN), or formally as:

]. (5)𝐹𝑃𝑅(𝑧) =  𝐸[ 𝐹𝑃(𝑧)
𝐹𝑃(𝑧) + 𝑇𝑁(𝑧)

Data examples

To illustrate the effect of different null distributions on multiple testing methods, we will

use leukemia collected by Harard Professor of Pediatrics, Todd Golub. The dataset consists of

the gene expressions of seventy-two leukemia patients among which forty-seven of them have

ALL and twenty-five of them have AML. To compare the differences between the two groups of

patients, we first conduct a t-test between the ALL patients and the AML patients.

Fig.1 shows the histogram of 2,185 t-statistics and the red line indicates the theoretical

null distribution N(0,1). The figure shows that the t-statistics are much wider and shorter than the

theoretical null distribution. We also observed that the t-statistics have a very slight right skew.

To obtain a better fit, we converted the t-statistics into z-scores and performed quantile

transformation.
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Fig.1. Histogram of the N=2,185 t-statistics (gray) and the theoretical null distribution (red line).

In Fig.2, we have the histogram of the z-scores after standardization. It is still wider and

shorter than the theoretical null distribution N(0,1) but it will suffice to provide us a meaningful

estimation of the fraction of true negatives, . To obtain a better fitted null distribution, we use𝑝
0

the estimation method mentioned in the section above using an interval of [-0.2, 0.2]. We𝑝
0

compute the estimated parameter = 0.595. This confirms our previous observation that our𝑝
0

histogram is much lower than the theoretical null and estimates that around 40.5% of the genes

are expressed differently in the two types of leukemia patients.

After scaling the theoretical null distribution N(0,1) with , the theoretical distribution𝑝
0

fits the z-scores much better; however, this approach still does not address the issue of the higher

variance and the skewness of the data. Therefore, we estimate an empirical null distribution

using the median of the z-scores and an estimated standard-deviation. Using the interquartile

range (IQR), we estimate the standard deviation . Again we estimate theσ = 𝐼𝑄𝑅/1. 349

parameter using the method above. This new estimation suggests that about 6.7% of𝑝
0

= 0. 933

the genes are expressed differently between the two groups, much lower than the 40.5% obtained
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above. Combine all the result, we have empirical null distribution estimated parameters

, , and . The resulting distribution, observed as the red𝑝
0

= 0. 933 µ =− 0. 066 σ = 1. 534

solid line in Fig.2, provides a much better fit of the data than both the theoretical and scaled

theoretical null distribution. The empirical null distribution adjusts to the histogram’s additional

variance due to confounding factors and will provide more realistic results and estimations of

error rates.

Fig.2. Histogram of the N=2,185 transformed z-scores (gray), the theoretical null distribution (red dotted

line), the theoretical null distribution scaled by = 0.595 (red dashed line), and the empirical null𝑝
0

distribution scaled by = 0.933.𝑝
0



8

Fig.3. Error rate metrics of theoretical and empirical null distribution: (a) Right tail True Positive

Rate (TPR). (b) Right tail False Positive Rate (FPR). (c) Right tail False Discovery Rate (FDR).

Fig.3 shows the right tail True Positive Rate (TPR), False Positive Rate (FPR), and False

Discovery Rate (FDR) of the theoretical null distribution and the empirical null distribution. The

theoretical null distribution is obtained from scaling the N(0,1) with estimated . The𝑝
0

=  0. 595

empirical null distribution is obtained from scaling N( , ) whereas andµ σ µ =− 0. 066

with . The TPR indicates the likelihood that an actual positive sampleσ = 1. 534 𝑝
0

=  0. 933

produces a positive testing result. In Fig.3a, we see that the TPR of the empirical null goes above
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1. This is due to mismatch between the data and the distribution, as observed in Fig.2 the

empirical null distribution goes above the histogram from around -4 to -2. The FPR indicates the

likelihood of false positives. Lastly, the FDR is computed in equation (2) as the rate between the

number of FP and the number of total tested positives and it computes the rate of type I error.

Fig.3c shows that the theoretical null distribution yields a FDR curve that converges to 0 as the

threshold x increases. Meanwhile, the empirical null distribution produces a much higher level

FDR than the theoretical null distribution given the same level of threshold. Moreover, the FDR

curve yielded by the empirical null distribution fails to converge as x increases and is

approximately 0.44 when the threshold is the largest at x = 5.

Discussion

At first, the result from Fig.3c seems to conflict with our hypothesis that the empirical

null distribution will produce better results than the theoretical null distribution. While our result

shows that the theoretical null distribution yields a lower estimated FDR at the same level of

threshold than the empirical null distribution, this does not necessarily mean that the theoretical

null provides a more accurate result. Since we cannot know the actual label of the data, there is

no way for us to actually test the accuracy of our result. What we have is an estimation of the

error rate, which allows us to gain insight into the likelihood of false positives at each level of

the threshold. The theoretical null distribution yields an apparent lower error rate, but this result

may be incorrect. This is because that as we have observed, additional variance in the histogram,

due to confounding factors, will skew the results of the theoretical null. In contrast, the empirical

null distribution adjusts for those unknown confounding factors empirically. This results in lower

detection power, as observed from the difference in the estimated parameter , but the error rate𝑝
0

may be more realistic, meaning it is closer to the true error rate.
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