
DSC180B Capstone Project Report

Jian Jiao, Zihan Qin

March 2021

Abstract

Nowadays, smartphone is an indispensable part of people’s daily life.
Android System is the most popular system running on smartphone. Due
to this popularity, malware detection on Android becomes on of the most
significant task for research community. In this project, we are mainly
focusing on one called MAMADROID System. Instead of previous work
which highly relied on the permissions requested by apps, MAMADROID
relied on the sequences of abstracted API calls performed by apps. We
are very interested in this model and really want to explore deeper into
it. To achieve this, we’ve been trying produce our own malware detection
model based on the idea of MAMADROID. Basically what we’ve done is
We made three basic model and take the one with the highest accuracy
and made two more advanced model based on this model with the best
performance.

1 Introduction

During 2019, 87% of the smartphone sales were running Android system. Due
to this popularity, cyber-criminals have increasingly targeted this ecosystem, as
malware running on mobile devices can be particularly lucrative. As a result, the
research community has devoted significant attention to malware detection on
Android system. Previous work has often relied on the permissions requested
by apps, using models built from malware samples. This strategy, however,
is prone to false positives, since there are often legitimate reasons for benign
apps to request permission classified as dangerous. To overcome this obstacle,
research community has developed a novel system for malware detection called
MAMADROID System[1]. Instead of relying on the permissions requested
by apps, MAMADROID System relies on the sequences of abstracted API calls
performed by an app rather than their use or frequency, using Markov Chains
to model the behavior of the apps through the sequences of API calls. By doing
research on this novel system, we are very interested in this model and really
want to explore deeper into it. Therefore, our research question is: Create a
malware detection model based on the idea of MAMADROID.

1



2 Data Generating Process

2.1 Source of Data

Our raw apps data are collected from course DSMPL. We randomly collected
77 apps contain malware and 143 benign apps, 220 apps data in total. Then
we divided them into 147 apps for training and 73 apps for testing. Since the
raw data have been classified into different categories, we are 100% percent sure
that those benign apps don’t contain any malware.

2.2 Data Description

The original form of our data was Android Application Package (APK) which
could be unpacked by Apktools. We unpacked those packages to get the Smali
fiiles specifically for malware detection. Smali file is a type of file convert from
the original Java code of an app. Based on previous works done by research
community, malicious action of an app is always appeared in Smali files so that
use Smali file for malware detection is significantly meaningful.An example of
the structure of a Smali file and the API calls inside it is shown below:

Figure 1: An example of Smali file

In the figure above, we can observed that a Smali file contains 4 part of informa-
tion: class information, statistic fields, method and API calls. The method and
API calls in a smali file is what we are going to analyze for building the model.
The API calls we are using is extracted from Smali files for each application.

2



By dealing with API calls, we could be more aware of the characteristic of a
malware so that we could better analyze a way for malware detection.

2.3 Feature Extraction

The original MAMADROID System used Markov Chains to model app be-
havior, by evaluating transitions between calls. For each app, MAMADROID
System takes as input the sequence of abstracted API calls (families/packages)
of that app and builds a Markov chain where each package/family is a state and
the transitions represent the probability of moving from one state to another.
To improve this, we first try to take input as the method sequences of API calls
instead of families/packages. Thus, the feature that we are going to use is the
method sequences of API calls where each method and the API calls it con-
tains represent states and the transitions represent the probability of a method
moving to each API calls inside it. Here is an example of our feature:

Figure 2: Feature example

In the figure above, the blue box represent a method and contents in the grey
box is API calls contain in this method. Our model used this feature to fit into
Markov Chains to evaluate the behavior of an app and then classified it into
either benign or malware.

3 Model

3.1 Model Description

Using the features derived from data extracting process, based on the fact that
the predictive task is generally classification problem, we have built 3 models
in this project: Logistic Regression Model, Decision Tree Classifier, K-Nearest
Neighbor-Classifier. Table 1 shows the test accuracy of our three models.

Model Train Accuracy Test Accuracy

Logistic 0.721 0.822
DecisionTree 0.918 0.74

KNN 0.925 0.918

Table 1: Model Accuracy

3



K-Nearest-Neighbor Classifier, ”KNN” in short, performed best among all
three models.

3.2 KNN Description

In K-Nearest-Neighbor model, each data point is composed by a vector of six
values: the number of Api-calls from android, androidx, java, javax, kotlin, self-
defined families. Table 2 shows a sample observation from all feature vectors.

Index android androidx java javax kotlin self

1 5382 21 8367 0 0 4362

Table 2: Sample observation

KNN will store all training data points (vectors in that case) after training.
During prediction process, KNN model will search through all data points in
the training set to find N-nearest data points of the input point and predict the
result to be the majority of these neighbors. For instance, we set number of
nearest neighbors to be 5 and get five data points. Two of them are malware
and three of them are benign software. Then the model will predict it to be
benign software since the majority of its neighbors is benignware.

3.3 Model Optimization

Since KNN model performed the best among all three, we choose this model and
tried to optimize it. To improve this model, hyper-parameter tuning was did.
We tried several different values of K, from 1 to 20, to find its best performance.
The following figure 3 shows how test accuracy and train accuracy changed
along with different K.

Based on figure 3, although K=1 has the highest train accuracy, it is not
meaningful since K=1 means for each data point in the training set, the model
is finding the data point itself, which will result in 100% accuracy. Therefore,
when K=3, the model performs the best. Table 3 shows the top 3 test accuracy
achieved by this model when K=1,3,5.

K Train Accuracy Test Accuracy

1 1 0.89
3 0.925 0.918
5 0.891 0.849

Table 3: KNN Accuracy with different K

3.4 Advanced Model

We then focus on the predicted results to discover ways to improve our current
3-Nearest-Neighbor model. To research the predicted results in a more detailed

4



Figure 3: KNN

way, we generate TP-TN-FP-FN matrix to reveal deeper information behind
model performance. FP (A benignware predicted to be malware) and FN (A
malware predicted to be benignware) are the most important categories since
they shows mistakes made by the model. FN has more significant meaning since
letting a malware pass detection would be a disaster. The following table shows
the statistics.

Positive Negative
True 62 137
False 6 15

Table 4: TP-TN-FP-FN Matrix

We classify all software according to TP-TN-FP-FN and draw figure 4, which
is a bar chart showing average of numbers of api-call with respect to different
families.

According to Figure 4, malware which were classified to be benign software
have fewer number of api-calls in general compared to TP malware. Also, FN
malware have larger possibility of invoking self defined api-calls than java calls.
FP benignware which were classified to be have larger number of api-calls com-
pared to TN benignware. In addition, malware rarely call apis from androidx
and kotlin families. Based on information above, we built a new KNN model
which first standardizes number of api-calls to fraction of total number of api-
calls of specific software and our new advanced model which contains a hybrid
of KNN and our self-defined Decision Tree. It sets threshold for FN and FP
malwares to cover edge cases. Our model performs the best when K=3. The
hyper-parameter tuning of our advanced model is showed in Figure 5 below.

5



Figure 4: TP-TN-FP-FN

Figure 5: Advanced Model

4 Results

Below are the results of our 3 different KNN models.

6



4.1 Model Comparison

Model Train Accuracy Test Accuracy

Advanced KNN 0.915 0.945
Standardized KNN 0.823 0.877

KNN 0.925 0.917

Table 5: Accuracy

The accuracy comparisons of these models has shown that our advanced
model performed the best among all three models.

4.2 Model Analysis

The best model, Advanced KNN, is a hybrid of original KNN, standardized
KNN and Decision Tree defined by us. It not only covers normal cases but also
margin situations. On the contrary, the other two models, Standardized KNN
make the input standardized to percentile before training and predicting, but
it will lost information about number of api-call. Normal KNN only considers
major cases and does not take margins into consideration.

4.3 Data Findings

According to our research results: 1.Malware tend to has more java api-calls
than self-defined and android api-calls. 2.Malware with fewer api-calls is more
likely to be classified as benignware.

4.4 Significance

The result of this project has broad application in our daily life. If we can
build a strong model to help Android users make accurate classification about
whether a software is benign or harmful, it can protect information, privacy and
save a lot of money for users.

References

[1] Mariconti Enrico, Onwuzurike Lucky, Andriotis Panagiotis, De Cristofaro
Emiliano, Ross Gordon, and Stringhini Gianluca. MAMADROID: Detecting
Android Malware by Building Markov Chains of Behavioral Models. 2017.

7


