
Neel Shah A15151631  

Yuxuan Ma A15155201  

Section A03 

/**Feedback from previous submissions -  

1. Too much detail on data processing  

2. Abstract some stuff from the beginning  

3. Add detail and set up the problem for word2vec, node2vec, metapath2vec - discuss trade 

offs  

4. Don’t talk about it as a project, talk about it as a problem at hand  

5. Discuss choice for hyperparameters 

6. Statistics for the data, not just a peek at it 

7. Include a lot of analysis **/ 

Exploring the Language of Malware 
Abstract 

 

The Android app store and its open-source features make it extremely vulnerable to 

malicious software, known as Malware. The current state of the art encompasses the use of 

advanced code analysis and corresponding machine learning models. Although along with our 

initial research we found that the Applications in the Android app store along with their 

corresponding API calls behave a lot like a language. They have their comparable own syntax, 

structure, and grammar. This inspired us to use techniques from Natural Language 

Processing(NLP) and use the same idea of creating graphical relationships between applications 

and APIs. Additionally, we also show that the use of these graphical embeddings maintains the 

integrity of classification metrics to even correctly identify and differentiate Malware and Benign 

applications.  

 

1. Introduction 
 

By July 2020, Android OS is still a leading mobile operating system that holds 74.6% of 

the market share worldwide, attracting numerous cyber-criminals who are targeting the largest 



crowd.¹ The current state of the art of Malware detection uses machine learning models built of 

static syntactic relationships between the codebase and corresponding API calls.  

A great baseline for models currently used is the HinDroid implementation​. As other 

malware detection system simply use Application Programming Interface (API) calls, HinDroid 

further analyzes the relationship between API calls and higher-level semantics which raise the 

threshold for attackers.​3​ A prime example of using Heterogeneous Information Network for 

Android Malware Detection.​3 

Initial analysis and research from the Heterogeneous Networks made it more apparent 

that the relationships between APIs and applications were closely modeled to languages. They 

had their own syntax, structure, and semantics. Thus these relationships were further analyzed in 

order to use Natural Language Processing (NLP) techniques to further form relationships and 

classify Malware and Benign applications.  

With the core idea to map out relationships using language models, this paper explores a 

handful of vectorization and embedding techniques to accurately form information chains across 

the data. In particular, we explore Word2vec, Node2vec, and Metapath2vec in-depth and discuss 

other advanced implementations.  

 

2. Data 

2.1 Data Collection 

Data Source 

In order to accurately map relationships between API’s the applications from the Android Play 

Store are reduced to a version of assembly code for Java-based applications called Dalvik 

bytecode. The APK’s that contain the smali code are directly downloaded from 

‘​https://apkpure.com/​’ and compiled into .smali files using the apktools library. 

 

Data Extraction 

Thus, this data is then unpackaged using the apktools library that allows us to view the 

subsequent smali code (a code that humans can interpret) and app binaries. The smali code and 

app binaries contain a lot of the information derived from the Java source code that allows us to 

map the number of API calls and the relationships between them.  

 

https://apkpure.com/


Data Categories  

We extracted the datasets of the source code of each app from our section resource, 

which includes ​a total of 800 apps. The benign apps are picked randomly. For the malware apps, 

we specifically picked malware apps that are type Anup and RuMMS.  

 

RuMMS​ is a type of SMS Phishing malware that has gained popularity in recent years, 

while some of the others were chosen randomly from a set of Malware types. The intention 

behind this was to accurately identify through embeddings the presence of varied Malware 

genres. 

 

 

 

2.2 Exploring Data  

 

The scale at which each application had API calls was approximate of the order of O(N​2​). Thus 

across a large variety of applications, there were approximately 10 Million API Calls that needed 

to be handled. To correctly evaluate the scale the APIs were analyzed at scale, some of these 

findings resulted in resorting to Vectorization and API Reduction techniques.  

 

The API call itself provides an array of information to be able to organize the relationships 

between APIs and Applications in their respective matrices.  

 

 

 

 

 



API Calls 

One of the major differences between malware and benign apps is the number of API 

calls to the system. Not only are the number of API calls different, although the variety of API 

calls in malware tend to be much higher.  

Below we see the quantity distribution of the most popular common API across both 

Malware and Benign Applications. The commonly used API calls in benign apps tend to be 

similar. This further allows us to create better formulas for reducing and vectorizing API calls. 

 

 

 

Constructing Adjacency Matrices 

To help highlight APP → API relationships, we created 3 adjacency matrices.  

Below are the three matrices and their contents.  



 

 

Based on the matrices, we explored meta path AA​^T​, ABA​^T​, APA​^T​, and APBP​^T​A​^T​, and used 

multi-kernel learning to compute the similarities. 

 

Baseline Model  

As a baseline model for all the subsequent research, we picked the HinDroid model. The 

HinDroid model leverages the Adjacency Matrices and their subsequent meta paths, as outlined 

above to be inputted into Support Vector Machines as custom kernels for the model.  

It must be noted that the baseline model, here, is not a function of improving subsequent models 

- rather a comparison to gauge metrics from various techniques used ahead. 

  

Baseline Performance 
 

 

Kernel Accuracy F1 Score 

AA^T 0.985218 0.97 

ABA^T 0.773315 0.77 

APA^T 0.983132 0.97 

APBP^TA^T 0.764901 0.77 



 

 

3. Graph Embedding Techniques 

Now that we’ve established base relationships across Apps and APIs through various adjacency 

matrices and baseline models. To better understand the relationships between API calls, and their 

subsequent properties we explore them through Graph Networks, their ability to learn and 

traverse, and the corresponding vectorized embeddings.  

 

3.1 Word2vec 

 

Word2Vec is one of the most popular techniques to learn word embeddings using a 

shallow neural network, developed by ​Tomas Mikolov in 2013 at Google​.  Word2vec learns the 

association among words from a large corpus of text, and it could be used to find synonymous 

words or suggest an additional word for an incomplete sentence using ​Skip Gram​ or ​Common 

Bag Of Words (CBOW). 

For this particular analysis, we constructed a graph traversal for the word to vector 

embeddings using the APA relationship. An APA relationship is a meta-path: 

App→(contains)API→(same package name)API→(contains​-1​)APP. After this, we can then use 

the dot product to calculate the similarity. This allows us to analyze through embeddings the 

relationships of malware and benign applications.  

 

 

This relationship is expressed as embeddings which we then visualize on the 

2-Dimensional plane to further use clustering techniques to classify the application types.  

 

3.2 Node2vec 



Node2vec is an algorithmic framework for representational learning on graphs. Given 

any graph, it can learn continuous feature representations for the nodes, which can then be used 

for various downstream machine learning tasks. 

Compared to the simple graph we have for Word2Vec, Node2vec can be applied to 

complexly structured graphs that are " (un)directed, (un)weighted, or (a)cyclic." To accomplish 

that, Node2vec generates biased random walks from each node of the graph. This provides a way 

of balancing the exploration-exploitation tradeoff by smoothly interpolate between BFS and 

DFS. 

Using random walks through the corpus, we created multiple documents as an input into 

the Gensim model for vectorizing embeddings using sentences. These embeddings were then 

analyzed using their corresponding graph clusters.  

The purpose of random walks is to add context to the Application → API nodes, by 

looking at corresponding applications or APIs that are neighbors to the starting applications.  

In the figure under node2vec above we clearly see the distinction between the two 

classes. On visualizing this on a 2-Dimensional plane it is now possible to use lighter 

classification models to help classify benign vs malware applications. 

 

3.3 Metapath2vec 

Comparing to Word2Vec and Node2Vec which use homogeneous graph networks, 

Metapath2Vec uses heterogeneous graph networks. Heterogeneous graph networks allow us to 

distinguish different types of nodes and edges(relationship). In our case, using heterogeneous 

graph networks enable us to see the difference between API and APP nodes.  

 

On the other hand, similar to Node2Vec, Metapath2Vec takes random walks to “construct 

the heterogeneous neighborhood of a node” and then uses “a heterogeneous skip-gram model to 

perform node embeddings.”​6  

 

4. Vector Embedding Analysis and Exploration 



 

To visualize the Embedding Techniques,  

1. we imported ​gensim.models​ to vectorize the apps 

2. Then we visualize the high-dimension vector using scipy.TSNE, (The graph showing in 

the subsection below) allowed us to reduce the dimension of the vector embeddings to 2.  

 

3.1 Word2vec: 

 

 



 

 

3.2 Node2vec: 

 

The graph above shows the distribution of each app from graph embedding. A dot represents an 

app in the graph. 



Then we use the k-means clustering method to classify the apps from malware to benign apps. 

The graph below shows the result when k = 2, k=3, and k=4. (see the pics below) 

(k = 2)      (k = 3)  (k = 4) 

Here is the accurate plot differentiating malware from benign apps: 

 

Comparing the plots, we can see that k-means clustering isn’t a good model to predict malware. 

As all the k-means clustering separates clusters horizontally, we can assume that more than 50% 

of APPs are misclassified. Misclassifying malware as a benign app could cause a huge loss, so 

K-means clustering isn’t a good algorithm for detecting malware. 



Looking at the second graph, we see a distinct boundary between the application types. Further 

analysis would look at different meta paths that could better identify this boundary in addition to 

classifiers to elevate the creation of decision boundaries. 

 

A similar observation can be made with the word2vec graph showing the difference between the 

two classes, here even a linear relationship could be identified between the two classes.  

 

5. Comparison 

 

6. Conclusion 

 
To be continued...  



Appendix 
Previous Project Proposal: 

https://docs.google.com/document/d/1_Sn9lMGhEh_TzhSt45jmQPtwQFF-s6itbVya3ChuQuU/e

dit?usp=sharing 

 

 

 
  

https://docs.google.com/document/d/1_Sn9lMGhEh_TzhSt45jmQPtwQFF-s6itbVya3ChuQuU/edit?usp=sharing
https://docs.google.com/document/d/1_Sn9lMGhEh_TzhSt45jmQPtwQFF-s6itbVya3ChuQuU/edit?usp=sharing


Reference Page 

1. O'Dea, Published by S., and Aug 17. “Mobile OS Market Share 2019.” ​Statista​, 

17 Aug. 2020, 

www.statista.com/statistics/272698/global-market-share-held-by-mobile-operatin
g-systems-since-2009/.  

2. Panda Security Panda Security specializes in the development of endpoint 
security products and is part of the WatchGuard portfolio of IT security solutions. 

Initially focused on the development of antivirus software. “Android Devices 50 

Times More Infected Compared to IOS - Panda Security.” ​Panda Security 

Mediacenter​, 14 Jan. 2019, 

www.pandasecurity.com/en/mediacenter/mobile-security/android-more-infected-t
han-ios/ 

3. Shifu Hou, Yanfang Ye ∗ , Yangqiu Song, and Melih Abdulhayoglu. 2017. 

HinDroid: An Intelligent Android Malware Detection System Based on Structured 
Heterogeneous Information Network. In Proceedings of KDD’17, August 13-17, 

2017, Halifax, NS, Canada, 9 pages. DOI: 10.1145/3097983.3098026 
4. Karani, Dhruvil. “Introduction to Word Embedding and Word2Vec.” ​Medium​, 

Towards Data Science, 2 Sept. 2020, 

towardsdatascience.com/introduction-to-word-embedding-and-word2vec-652d0c
2060fa#:~:text=How%20does%20Word2Vec%20work%3F&text=CBOW%20Mod

el%3A%20This%20method%20takes,word%20corresponding%20to%20the%20
context.  

5. Cohen, Elior. “node2vec: Embeddings for Graph Data.” ​Medium​, Towards Data 

Science, 23 Apr. 2018, 
towardsdatascience.com/node2vec-embeddings-for-graph-data-32a866340fef.  

6. Yuxiao Dong, Nitesh V. Chawla, and Ananthram Swami. 2017. metapath2vec: 

Scalable Representation Learning for Heterogeneous Networks. In KDD'17. 

135–144. 

http://www.pandasecurity.com/en/mediacenter/mobile-security/android-more-infected-than-ios/
http://www.pandasecurity.com/en/mediacenter/mobile-security/android-more-infected-than-ios/

