
CoCoDroid: Detecting Malware By Building Common

Graph Using Control Flow Graph

Sabrina Ho
UC San Diego
Data Science

ssh026@ucsd.edu

Edwin Huang
UC San Diego
Data Science

edh021@ucsd.edu

March 10, 2021

Abstract

In today’s world, malware has grown so much. In 2020, there are more than 129
millions of Android users around the world. With Android applications dominating
the devices, we hope to produce a detection tool that is accessible to the general
public. We present a structure that analyze apps in the form of control flow graph.
With that, we build a common graph to capture how close the apps are to each other
and classify whether they are malicious or not. We compare our work with other
methods and show that using control flow graph is a good choice as a representation
of Android applications (APKs) and can outperform other models. We built features
using Metapath2Vec and Doc2Vec, and trained Random Forest, 1-Nearest Neighbors,
and 3-Nearest Neighbors Models.

1 Introduction

There are many malware detection tools available in the market, including pattern-based,
behavior-based methods, etc, with the prompt development of artificial intelligence, many
modern data analysis methods are applied to detecting malware in recent years. We are
interested in investigating the effectiveness of different data analysis methods for detecting
certain types of malware.

As the number of malicious software (malware) increases throughout the past few
decades, malware detection has become a challenge for app developers, companies hosting
the apps, and people using the apps. There are many pieces of research conducted on
malware detection since it first appeared in the early 1970s. Just like the paper we studied
in our first quarter, it uses the HIN (Heterogeneous Information Network) structure to
classify the Android applications. It also compared its own method against other popular
methods such as Naive Bayes and Decision Tree, and other known commercial mobile
security products, to test its performance. The result showed that their method performs
better than the other methods with an accuracy of 98% while other others only achieve
an average of 90%. After studying the paper, we are more curious about the detecting
effectiveness of an analysis method when applied to a certain type of malware.

1

Figure 1: Project Pipeline

Not everyone has access to tools that can detect whether or not the app they just
downloaded is malicious or not. Our motivation to conduct this research is to hope to
produce a recommending tool that can be easily accessed by the general public for detecting
malware. Optimistically, we want to reduce the chance of people downloading malicious
apps and potentially prevent their devices from being hacked. To achieve that, we will be
classifying applications using Control Flow Graphs and different similarity-based methods
including k-nearest neighbors (kNN) as well as Random Forest classifier to see if different
methods can detect certain types of malware or any specific features.

We are interested in analyzing whether one classifier has better performance in de-
tecting certain types of malware or specific features, and designing a framework for rec-
ommending a method with a specific set of parameters for a certain type of malware
and provide users a more friendly interface. With the similarity-based approach, we be-
lieve that it will detect malware with much higher accuracy and will be more flexible for
applications that evolved over time as they become more complicated.

2 Related Work

2.1 MamaDroid

MamaDroid [1] is a system that detects Android malware by the apps’ behaviors. This
method extract call graphs from APKs, which are represented using nodes and edges in
a graph object. From each graph, sequences of probabilities are extracted, representing
one feature vector per APK. These probabilistic feature vectors are used for malware
classification. MamaDroid also abstracts each API call to the family and package level,
which inspired us to abstract to the class level. This is discussed further later.

2.2 Hindroid

Hindroid [2] is a system that parses SMALI code extracted from APKs and uses them
to create four different graphs, which are represented by large matrices. Within these
matrices, each value in a matrix corresponds to an edge. A combination of these matrices
are used to classify malicious software and benign apps.

2.3 Metapath2Vec

Metapath2Vec [3] is a node representation learning model that uses predefined paths based
on the node types. These paths define where the the program can traverse the graph.
Following is an example of a metapath. In this case below, the metapath is Type 1 →
Type 2 → Type 1 → Type 3 → Type 1.

2

Figure 2: Metapath2vec Example

With predefined meta-paths, we can traverse a graph according to these node types
to generate a large corpus, which is then fed into Node2Vec to obtain representations of
words. This method will obtain one vector for one node within the graph.

2.4 Word2Vec

Word2vec [4] is a model that turns text into numerical representations. It is trained on a
large corpus, and outputs a representation for each word in the corpus. Below is a famous
example of Word2Vec: King and Queen and Men and Women.

Figure 3: Word2vec Example

Since Word2Vec measures the similarity between words using Cosine similarity, we can
see from the above vector space that the word King is similar to Queen, and Men is similar
to Women.

2.5 Doc2Vec

Similar to Word2Vec, Doc2Vec [5] turns a whole document/paragraph into numerical
representations instead of word representations. If we can obtain one corpus from each of
the apps by applying metapath2vec, then we can treat each corpus as its own document,
and then feed it into the Doc2Vec model to learn representations for each of the documents.
These vector representations can then be used in the classification process.

3 Data

The data we will be using is randomly downloaded from APK Pure and AMD malware
dataset. It consists of labeled malware and other popular and unpopular (random) appli-
cations. Among our random apps downloaded from APK Pure, there might be one app
out of five that might be a malware since they are apps that have little or no reviews.
Rather than using .SMALI files, we will be working with APK files directly. From the
APK files, we will be extracting a new form of representation called Control Flow Graphs.
With APK files, we can easily generate control flow graphs through Androguard [6], which
is a powerful tool to disassemble and decompile Android applications.

3.1 Control Flow Graph

A Control Flow Graph (CFG) is a representation using graph notation of all paths that
might be traversed through a program during execution. Firstly, a CFG consists of nodes

3

and edges. Control Flow is the order in which individual statements, instructions, or
function calls of an imperative program are executed or evaluated. Imperative meaning
statements that change a program’s state. Each node in the CFG represents a basic block,
or a straight-line piece of code without any jumps or jump targets. In our case, a node
in the CFG is an API or method call. A jump statement is a statement that changes the
program’s flow into another place of the source code. For example, from line 4 to line 60,
or from file 1 to file 6. The following figures 4 are two simple control flow graphs.

Figure 4: A Simple Control Flow Graph

A node in our CFG can call another API (node). A node can be visualized as one of
the circles in Figure 4, and the ”call” action can be visualized by the arrow(edge). Each
node has attributes. There are 7 Boolean attributes for each node, and 3 different edge
types.

Node Attributes
External If a node is an external method
Entrypoint If a node is not called by anything
Native If a node is native
Public If the node is a public method
Static If the node is a static method
Node If none of the above are True
APK node If the node is an APK

Table 1: Node Attributes

We can pick from the 6 Boolean attributes and create node types based, such as:
“external, public Node”, “external, static Node” and “entrypoint, native Node”. There
can be more than 20 different node types.

Edge Types
Calls API to API
Contains APK to API
In API to APK

Table 2: Edge Types

Together, nodes and edges can build paths like: “external, public Node - calls –>
external, static Node” or “APK - contains –> external, public Node”. The following is a
control flow graph example with code block to explain how nodes are called:

Class: Lclass0/package0/exampleclass; ## let’s call this A

direct methods

.method public constructor <init>()V

if:

api, call this B:

Lclass1/package1/example;->doSomething(Ljava/lang/String;)V

else:

api, call this C:

Lclass2/package2/example;->perform(L1/2/3)F

4

Figure 5: Control Flow Graph With Code Block Example

The method constructor calls API A, which calls API B: doSomething and calls
API C: perform. Since API B and API C will jump to other places within the source
code, the flow of the program is broken, and this jump is recorded in the control flow
graph.

The Control Flow Graph from an app records tens of thousands of these calls, and
represents them as edges, where each edge contains two nodes.

3.2 Common Graph

Since we obtained a large number of CFGs for a large number of APKs, we need to figure
out a way to connect all of these graphs so the representations for each API will be the
same. We want the API representations to be the same so when we are classifying we
know that all feature vectors are built the same way. This is to avoid us creating random
feature vectors, and will result in the model classifying randomly. To make sure we are
building features correctly, we must create a common graph that links every CFG together.
Also, during the testing phase, we can use these node embeddings to build a feature vector
for an unseen app. The common graph we built contains a total of 1,950,729 nodes, and
215,604,110 edges. Our common graph is simply a union of all the control flow graphs
that we obtained from separate apps. This is not only to make sure that each distinct
API node are consistent throughout our training and testing process, but to make sure
that all our CFGs are on the same space. First, all the edges of each separate graphs are
extracted, along with their weights and node types of each edge. Then, these information
are loaded altogether to become a common graph.

Figure 6: Common Graph Example

Figure 6 above demonstrates what a common graph looks like by combining two control
flow graphs from two different apps. On the left we have red and blue applications, which
both have five nodes consisting of A, B, and C nodes connected together and other nodes
of its own. When combining them, we generate the graph on the right, which merge the
shared nodes with each other. Duplicate nodes are joined to be one, while the edges are

5

still preserved. As you can see, the similar A, B, C sequence is preserved as well. This is
important when we are building feature vectors for an app. The common graph ensures the
same node representations for two graphs. This means that when we are building feature
vectors for apps, the same representations are used for two similar apps. Conversely, if
two apps are not similar and do not share the same sequences, then their representations
will be very different. Like in the common graph in Figure 6, this will make sure that the
similarity and differences between the apps are preserved.

3.3 Data Generating Process and ETL

The raw data we are investigating is code written by app developers. In order to turn
something into a malware, you have to alter the source code, which will allow hackers
to plant certain types of malicious code. If a developer were to hijack a device, then
the app would need special Root permissions. Often targeting API calls that represent
System Calls is one of the ways to alter the source code. For that reason, source code is
an essential part in determining whether an application is malicious or not.

As mentioned above, we will be using control flow graphs converted directly from the
APK files. We are looking at the sequence of which these system calls are made and
define them as meta paths. We were able to obtain one CFG for each APK. We extracted
this by using Androguard’s AnalysisAPK method in its misc module which returns an
analysis object. Afterwards, we called .get call graph() on the analysis object to obtain
the CFG. At this stage, we also perform some feature extraction specifically on the nodes
of the graph. We extract the string representation of these nodes as well as node type.
The string representations of nodes is used to build the corpus, and the node type is used
to build meta paths. We then exported this graph as a compressed gml file to save on
disk. We hypothesize that our method will perform better than our baseline model, since
metapath2vec can capture the relations and context within the graphs, giving the feature
vector much more information. Also, our metapaths are traversed in the beginning of
our process to learn all possible metapaths. Using this method, we ensure that the model
learns the different sequences that a malware could have, and use this information in future
classification.

3.4 EDA

We have a total of 8435 malicious software and a total of 802 benign applications, which
is a combination of popular apks and random apps. While generating control flow graph
objects from the APK files, there was an error of “Missing AndroidManifest.xml,” so we
were not able to generate those graphs and will be working with fewer benign apps 1. To
counteract the imbalance between malware and benign apps, we calculated class weights
and used it in the classification process to ensure we are penalizing the model in a balanced
way.

Figure 7: Benign vs. Malicious

1We looked into why there might be missing Android Manifest files error, interestingly, we found that
some of the apps having this issue contain the manifest while some do not. However, the apps that have
this issue do not decompile correctly, and do not create a graph correctly as well.

6

To further understand our benign and malicious data, we perform analysis on these
graph objects by comparing the node types, as well as the counts of both nodes and edges.
On the left of Figure 8 shows the comparisons of node types between benign applications
and malicious code. From the two distributions, we can see that malware contains a lot
more types of nodes compared to benign apps. Specifically, most of the malware contains
five types of node. If we limit the range of that bar, we can see the right of Figure 8 for a
more clear distribution of benign apps. The left distribution also indicates that majority
of the benign apps have five types of nodes.

Figure 8: Benign vs. Malicious: Node Type Counts

But because of how imbalanced our data is, we plot the number of node types based
on the percentage, as shown below in figure 9. From this figure we can conclude that over
half of both benign and malicious apps have more than 5 types of nodes.

Figure 9: Benign vs. Malicious: Node Type Counts (%)

To further look into what are these node types, we analyze the top node types from
both benign and malware separately. The following figures (figure 10) are node types
distributions. On the left shows the benign node types spread, which over 50% of the
nodes are Public Node, followed by Node, External Node, Public Static Node, Static
Node, and the other types. Similarly, for malware, Public Node is the top most node type
found in the graphs. Followed by External Node, Node, Public Static Node, Static Node,
and the others. Both benign and malware have similar top nodes.

7

Figure 10: Benign vs. Malicious: Top Node Types and The Counts

Figure 11 is a scatter plot of number of edges and number of nodes for both benign
(red) and malware (blue). Although it seems that benign has a lot more apps in this plot,
malware are just all packed together. We can also see that benign apps have larger number
of edges and nodes compared to malware, this is because benign apps are larger in terms
of APK sizes and that they might be more complicated.

Figure 11: Benign vs. Malicious: Number of Edges and Number of Nodes

Since Figure 11 has outliers for benign apps and we want to focus on the malware, we
limit the range so that it looks like this Figure 12. From this figure we see that malware
is indeed packed together and that they have a lot less edge and nodes compared to the
benign apps.

Figure 12: Benign vs. Malicious: Number of Edges and Number of Nodes (Malware
Focused)

8

4 Methods

4.1 Feature Extraction

For our baseline, we extract probabilistic sequences from all possible edges of the APK,
which serves as the feature vector for classification. For the Metapath2Vec model, we first
create a common graph, then traverse it using Metapath2Vec to learn representations of
nodes, which is used to build feature vectors. For our Doc2Vec method, we treat each
APK as one document, and Doc2Vec produces one feature vector for one document.

4.2 Baseline: MamaDroid

We build Mamadroid as our baseline model. As introduced earlier, it extract call graphs
that are represented using nodes and edges. With the graphs, it extracts all the possible
edges based on the family or package level. It then extract sequences of probabilities of the
edges occurring. This probabilistic feature vector is used for classification. We abstract
API calls to both Family and Package level.

For example,

Example API call = "LFamily/Package"

Family Level = "LFamily"

Package Level = "LFamily/Package"

In Family level, there are seven possible families and 100 total possible edges. However,
in Package level, there are 226 possible packages and a total of 51,239 possible edges. The
number of possible families and packages are found on Android’s Developers [8] page.
Those families and packages that are not found on that webpage is abstracted to ”self-
defined”. Specifically, in family level, we will obtain a feature vector of 100 elements for one
app. In package level, we obtain a feature vector with 51,239 elements for one app. These
feature vectors are then used for classification. After obtaining the vector embeddings, we
classify using Random Forest model, 1-Nearest Neighbors, and 3-Nearest Neighbors.

4.3 Metapath2Vec Model Using Common Graph

As mentioned earlier, we also abstracted our API calls to the class level. For example, an
API call looks like this: ”Lfamily/package/class; → doSomething()V” at the class level,
it is: ”Lfamily/package/class;”. The reason for this is there could be user-defined classes,
which is not picked up in MamaDroid. We hope that we can obtain more information by
abstracting to the class level, but not get too much information at the API level which
might result in performance issues. We do not abstract anything to be ”self-defined” as
MamaDroid has.

1. Run a Depth First Search to explore all the node types that could be in an APK,
and create metapaths.

2. Build a common graph by combining all the separate control flow graphs representing
different apps.

3. Perform an uniform metapath walk on the common graph to obtain a huge corpus.

4. Perform node2vec to learn node embeddings of the huge corpus.

5. Build feature vectors for each app, using the node embeddings learned from step 4,
by combining embeddings of unique nodes of each app.

6. Classification using built feature vectors.

Explanations: We run a depth first search to explore all node types and metapaths
since we do not know how convoluted an app’s CFG may be and we need flexible metapaths
for each app. Also, there is the possibility of the malware being intentionally obfuscated.
Therefore, we need flexible metapaths for each app, which we will later use as the prede-
fined metapaths in our metapath2vec step. The reason our feature vector is a component
wise combination of node embeddings is because when two vectors are added together, a
new vector is obtained. As visualized below:

9

Figure 13: Vector Addition And Subtraction

This will provide more information about the APKs that we will classify. The model
can more easily learn the distinction between similar and different vectors, by the direction
and magnitude to where they point. Of course, the component wise combination can also
be other aggregations, such as taking an average, percentiles, and dot products. When
encountering an unseen app, unique nodes of that app is extracted. Representations of
each of the unique nodes are then found from the trained word2vec model, and some
component wise combination is performed to obtain a feature vector for classification.

4.4 Doc2Vec Model

1. For each app, extract all possible metapaths using Depth First Search, as well as
perform Metapath2vec on that app to obtain a corpus.

2. Take each corpus from each app, append them, and turn them into a list of Tagged
Documents.

3. Run the Tagged Documents into Doc2Vec to obtain a vector representation for each
app.

4. Take the vector representations for each tagged document, and use them as feature
vectors for classification.

The Doc2Vec model is very straight forward, taking in documents and returning rep-
resentations for those documents. When there is an unseen app, a corpus is extracted
from that app using metapath and is treated as a document. This document is then fed
into the Doc2Vec model, and a vector representation is ”inferred” using the .infer vector()
method.

5 Results and Discussion

5.1 Baseline

The following tables are results from our baseline model, MamaDroid, corresponding to
Family and Package mode. Surprisingly, our MamaDroid using control flow graphs per-
forms better than its original model. Let’s first take a look at the Family mode. The table
(Table 3) below is the confusion matrix, we calculated precision and recall scores based on
it.

Random Forest 1-NN 3-NN
True Negative 68 61 59
False Negative 4 9 8
False Positive 11 18 20
True Positive 1269 1264 1265

Table 3: Baseline Results (Confusion Matrix): Family

We compare the results to the original MamaDroid model [1]. In Table 4, we list the
original MamaDroid results on it as well to better compare it. We see that our version
of MamaDroid has better performance in all F1-Score, precision and recall scores, where
we obtain an F measure of 0.994 and the original model only has 0.880. Similarly to
precision and recall scores, we obtain 0.991 and 0.997, where the original model has 0.840
and 0.920 as their results. In addition to Random Forest, our 1-NN and 3-NN models also
outperform the original MamaDroid model. But all our three models have similar results.

10

PCA = 10 Components
Random Forest

1-NN 3-NN
Original Ours

F1-Score 0.880 0.994 0.980 0.994
Precision 0.840 0.991 0.985 0.994

Recall 0.920 0.997 0.994 0.994

Table 4: Baseline Results (F1-Score, Precision, Recall): Family

Next, we have results for our MamaDroid Package mode. Table 5 is the confusion
matrix. The numbers are close to what we obtain for Family level. However, the true
negatives for all three similarity-based models are slightly larger.

Random Forest 1-NN 3-NN
True Negative 70 70 70
False Negative 1 6 1
False Positive 15 15 15
True Positive 1266 1261 1266

Table 5: Baseline Results (Confusion Matrix): Package

We also compared the results of Package mode to the original MamaDroid results.
In Table 6, we also list out the results of original MamaDroid on the left to compare it
with the ones we obtain. As a result, our model was able to achieve an F measure of
0.993, precision score of 0.988, and recall score of 0.999, whereas the original model only
has performance of 0.940, 0.940, and 0.950. Both 1-NN and 3-NN models also have very
similar numbers as Random Forest model.

PCA = 10 Components
Random Forest

1-NN 3-NN
Original Ours

F1-Score 0.940 0.993 0.992 0.994
Precision 0.940 0.988 0.988 0.988

Recall 0.950 0.999 0.995 0.999

Table 6: Baseline Results (F1-Score, Precision, Recall): Package

5.2 Metapath2Vec/Common Graph (Partial)

For our Metapath2Vec model, we unfortunately do not have the complete results due to
large computational time it takes to build the common graph with all the data we have.
The complete common graph consists of 1,950,729 nodes, and 215,604,110 edges. However,
we did obtain results working with a smaller subset of the Common Graph, consisting of:
87,539 nodes and 15,617,223 edges.

Random Forest 1-NN 3-NN
True Negative 94 89 73
False Negative 16 31 36
False Positive 20 25 41
True Positive 1679 1664 1659

Table 7: Metapath2Vec Results (Confusion Matrix)

We tested on the entire test set, and surprisingly the performance was okay. Initially,
we thought that there might be an error, however, upon inspecting our code, we were
traversing the smaller common graph correctly. We believe we can obtain this result
because of the large amount of edges in the common graph as well as our walk length
of each traversal to 500. We set the walk length to 500 to compensate for the smaller
subset of graphs that we are using, and therefore can capture more information per walk.
Because of this, the Word2Vec model can learn more about those nodes and provide a
better representation.

11

Random Forest 1-NN 3-NN

F1-Score 0.989 0.983 0.977
Precision 0.992 0.966 0.982

Recall 0.642 0.959 0.959

Table 8: Metapath2Vec Results (F1-Score, Precision, Recall)

Even though the F1-Scores were high, our True Negative and False Positives are higher
than our baseline and Doc2vec model. This is again due to the smaller subset that we
are using for this experiment. Because of the smaller subset, we do not have a lot of
representations for nodes. There could have been some nodes that the Word2vec model
has never seen before, and therefore cannot infer a good representation for it.

5.3 Doc2Vec

The following tables are the results for Doc2Vec with our similarity-based models: Random
Forest, 1-NN, and 3-NN. Table 9 is the confusion matrix, which is used to compute the
precision and recall scores. The Doc2Vec performed worse than the baseline model on the
Random Forest model, and it seems like it was struggling with classifying benign apps.

Random Forest 1-NN 3-NN
True Negative 109 56 43
False Negative 606 68 71
False Positive 5 58 31
True Positive 1089 1627 1664

Table 9: Doc2Vec Results (Confusion Matrix)

In Table 10, we have our F measure, precision, and recall scores. We notice that our
Random Forest model only has an F measure of 0.781, which is a lot lower than our
baseline. On the other hand, both our k Nearest Neighbors perform much better than
Random Forest. The Random Forest classifier has an emphasis on certain features when
training, and focuses on some feature more than others. However, the 1-NN and 3-NN
models both look at an unseen vector’s closest neighbors, therefore utilizing all the features
in the vector. We believe this is why the 1-NN and 3-NN models performed better in this
experiment.

Random Forest 1-NN 3-NN

F1-Score 0.781 0.963 0.970
Precision 0.992 0.966 0.982

Recall 0.642 0.959 0.959

Table 10: Doc2Vec Results (F1-Score, Precision, Recall)

6 Conclusion, Discussion, and Future Work

In conclusion, our baseline model is able to achieve a better performance than the original
work that we have studied. Although our Doc2Vec did not perform better than the baseline
Random Forest model, our k Nearest Neighbors models performed almost as good as our
baseline. From this, we can see that Control Flow Graphs might be a good choice when
it comes to choosing representations for source code. Again, control flow graphs show the
jumps in code. From our EDA: Figure 11, even though malware has a small number of
nodes, they have a large amount of edges. This means that there could be lots of instances
where the program is jumping around in the source code. All this is recorded in the CFG
representation and could provide much more information about an APK.

Although we successfully created a complete common graph, we were unable to obtain
all the node embeddings from it due to time and memory constraints. Therefore we built
a smaller common graph to see how it performs. If time and resources allowed, we hope
to finish the metapath traversal of the complete common graph. Judging from the results
using the smaller common graph, if we were to scale up the model might out-perform our
baseline.

For our future work, we plan on investigating other vector embeddings technique and
perhaps instead of using only similarity-based models, we could also implement graph

12

neural networks (GNN). In addition to neural networks, we are also interested in graph
classification specifically. Since our data format is already in the form of multiple apps,
it can be easy to normalize and transform data for a GNN model. Of so many researches
we have seen on malware detection, not a lot of them uses control flow graphs as their
input data. Since our experiments confirmed that using control flow graphs is not any
worse than using other forms of data, we are curious to know if control flow graphs can
outperform in other models.

Acknowledgement

We would like to express our gratitude to our mentors for our Capstone project: Professor
Aaron Fraenkel, who provided us with lots of resources and ideas throughout the entire
process of our research, and Shivam Lakhotia, who guided us through the project and
assisted us every week.

References

[1] MamaDroid,
https://arxiv.org/pdf/1612.04433.pdf

[2] Hindroid,
https://www.cse.ust.hk/ yqsong/papers/2017-KDD-HINDROID.pdf

[3] Metapath2Vec,
https://ericdongyx.github.io/papers/KDD17-dong-chawla-swami-metapath2vec.pdf

[4] Word2Vec,
https://radimrehurek.com/gensim/models/word2vec.html

[5] Doc2Vec,
https://radimrehurek.com/gensim/models/doc2vec.html

[6] Androguard,
https://androguard.blogspot.com/2011/02/android-apps-visualization.html

[7] StellarGraph,
https://github.com/stellargraph/stellargraph

[8] SDK,
https://developer.android.com/studio/releases/platforms

[9] x2vec,
https://iopscience.iop.org/article/10.1088/2632-072X/aba83d/pdf

[10] Learning Embeddings of Directed Networks with Text-Associated Nodes—with Ap-
plication in Software Package Dependency Networks,
https://arxiv.org/pdf/1809.02270.pdf

13

