
Malware Detection
Yikai Hao

University of California, San

Diego

La Jolla, California

yih307@ucsd.edu

Yu-Chieh Chen

University of California, San

Diego

La Jolla, California

yuc399@ucsd.edu

Ruoyu Liu

University of California, San

Diego

La Jolla, California

rul141@ucsd.edu

ABSTRACT

As the technology grows fast in recent years, more and
more people cannot live without cell phones. It is im-
portant to protect users’ data for cell phone companies
and operating system providers. Therefore, detecting mal-
wares based on the code they have can avoid publishing
of malwares and prohibiting them from the source. This
report aims at finding a model which can detect malwares
accurately and with a small computational cost. It uses
different matrices and graphs to search the relationships
between applications and detecting malwares based on
the similarity. As a result, the best model can achieve a
test accuracy around 99%.

1 INTRODUCTION
As the internet techniques are growing at a fast speed

nowadays, people are starting to worry about their

data safety. Since many of us will store our impor-

tant information on our cellphones, we need to find

an appropriate way to secure our cell phone away from

malwares. As the operating system which takes over

80% of the cellphone market, Android operating system

is always a large target for malwares. Since the An-

droid system uses an open market where everyone has

the ability to upload application packages, malwares

can easily be uploaded and spread among the inter-

net. In addition, malwares can easily evade detection

by repackaging or using code obfuscation. As a severe

problem faced by Android, it is important to detect

the malwares to ensure the safety of user’s data. Lots

of scholars are starting to participate in the malware

detection research area. Many new technologies are

being applied to the malware detection area, includ-

ing Machine Learning strategies and Natural Language

Processing (NLP) methodologies.

In order to develop a more powerful tool for mal-

ware detection, we do not only focus on Application

Programming Interfaces(API). Some other features, like

the same return type or same package name, are also

considered. Those features can help us find the inner

relationships among applications. By using the idea of

Heterogeneous Information Network(HIN), we use ma-

trices to represent each kind of relationship. Aiming at

developing a faster model for malware detection, we

also use TF-IDF(term frequency - inverse document

frequency) to select out part of APIs and use them for

model construction. Besides matices, graphs are also

considered as features for the implementation of classi-

fiers. Using the logic of Network Representation Learn-

ing and NLP, we are able to change matices to different

graphs where edges represent different kinds of rela-

tionships. We compare all those models and find some

useful models for malware detection within a quick

speed. Related Work

2 RELATEDWORK
In recent years, lots of studies are focused in the area of

Intelligent Android malware detection systems. They

use machine learning and data mining strategies to con-

tribute their model for detecting malwares. And our

project is based on previous research on such kind of

malware detection, especially HinDroid[3]. HinDroid

focuses on utilizing API features in code and customiz-

ing kernels to identify malwares. It uses multi-kernel

with different assigned probabilities as its final model

for malware detection. HinDroid is based on the static

method which focuses on the internal component of

an application. There is also some previous research re-

lated toNetwork Representation Learning.Word2Vec[4]

designs a new simple way to represent words. It learns

the word vector using the Skip-gram model which pre-

dicts the previous and future words based on current

words. Node2Vec[2] is an algorithm used for learning

the feature representation for nodes by random walks.

Metapath2Vec[1] is the scalable representation algo-

rithm which formalizes the random walks by metapath.



Yikai Hao, Yu-Chieh Chen, and Ruoyu Liu

This report implements those algorithms to generate

graphs for classifiers and use them to detect malwares.

3 DATA OVERVIEW
3.1 Data Source
The data source is called Android Malware Dataset

(AMD). The dataset is published in 2017 by the Argus

Lab from the University of South Florida. This data

source is used by many other malware detection papers

and widely used in the research domain.

3.2 Data Description
The original source is the APK(Android Application

Package), which can be decompiled by Apktool. After

decompiling, we select smali files, which are a type of

files containing a proxy of the original code, specifically

for detecting malwares. We select 905 malwares and 905

benigns from the dataset. Benigns are separated in two

categories - popular applications and random applica-

tions. Popular applications are those on the application

chart for top downloads. And random applications are

random applications selected from apkpure.

3.3 Smali File
In order to analyze the smali files, we should under-

stand the structure of it. Therefore, figure 1 shows the

description of the smali files and the features contained

in the smali files.

Figure 1: Smali Structure

The basic components of a Smali file are the follow-

ing:

-Class information: In this example, Lbolts/a is the class

name for this file.

-Static fields: It contains the shared variables among

whole class

-Method direct virtual: It contains the methods in the

original java file. This is the part we will use to extract

our main feature - API and other related features.

3.4 API Calls
In order to understand which part of the smali files

do the malicious action, we put our attention on API

(Application Programming Interface) calls. There are

four main components in an API call.

Figure 2: API Call Example

The basic components of an API call are the follow-

ing:

-Invoke method: there are fivemethods to invoke in API

calls, including invoke-static, invoke-virtual, invoke-

direct, invoke-super, and invoke-interface.

-API package

-Method name

-Return type of the method

3.5 Data Extraction
After understanding the data structure of the data source

and the exact data section we want to focus on, we start

the data extraction process. We decide to use api name,

class type, package type, code block number, method

type, return type, and invoke type to be our features.

Those features almost include every kind of informa-

tion we can get from the smali file. In addition, we also

do some EDA(Exploratory Data Analysis) to make sure

every feature we get is distributed differently among

different types of applications. Therefore, the features

can present the original data and they are useful hints

to detect malwares.

3.6 Database
We design a special database to store the data we get.

Since the main feature is the api, there are over 2 mil-

lions unique apis and more than 50 millions apis ap-

peared in different smali files. Separated csv files and

unique ids are used to store the specific unique string



Malware Detection

values and represent the string value. Then, in the main

csv files, we store the unique ids from different refer-

ences. This will reduce the space and time dramatically.

For example, our storage originally will take up to 90G

spaces and now only takes 1.7G. The structure of the

database is shown in figure 3.

3.7 Data Statistics
After picking out the features we want, we do some

simple analysis based on the data we have. As the ta-

ble shows, the size difference between malwares and

benigns are huge. In addition, the unique api calls in

benigns are about 10 times larger than malwares. There-

fore, the difference between malwares and benigns do

exists and we are able to find some way to detect mal-

wares. The statistics is shown in table 1.

4 MODEL
4.1 Feature distribution
In order to check whether the features we generate

are useful for checking malwares, some Exploratory

Data Analysis (EDA) has done on features. We check

the difference between unique values among features

considered the type of applications. The result shows

that our features can clearly identify the different types

of applications since the value between different types

of applications are large (table 2).

We also plot out some distributions of features con-

sidering different types. Taking the number of unique

return types for example (figure 4), malwares are of-

ten having a relatively small number of unique val-

ues. However, popular applications are always having

a large number of unique return types. Random appli-

cations are more spread over the x-axis, but still more

condensed at a large number of unique return types.

Therefore, the number of unique return types will be a

useful feature to detect malwares.

4.2 HinDroid
HinDroid [3] is the baseline model we use for our report.

It contains different types of kernels and the meaning

behind each kernel is different. It uses the features we

extract from the data generating process to build some

matrices. Each matrix shows a type of relationship be-

tween apis or applications. Each matrix is an adjacent

matrix for a graph with a specialized relationship. By

choosing different types of matrices we want to com-

bine together, we get the kernel we have. Then we will

be able to use the custom kernels and put in different

classifiers like SVM or Random Forest for malware de-

tection.

The four types of matrices are: A, B, P, and I matrices.

• A matrix shows the connection among apis and

applications. The value within the A matrix will

be one if the application contains the api.

• B matrix shows the connection between apis. The

value within the B matrix shows whether two apis

are contained in the same code block.

• P matrix also shows the connection between apis.

The value within the P matrix shows whether two

apis use the same package.

• I matrix shows the connection within the apis.

The value within the I matrix shows whether two

apis use the same invoke type.

Currently, due to the large size of the unique apis we

get, we are not able to calculate out the I matrix yet.

Therefore, the kernel we have now for HinDroid isAA⊤
,

ABA⊤
, APA⊤

, and APBP⊤A⊤
.

4.3 New Model
The HinDroid model runs pretty slow since there are a

large number of APIs. However, lots of APIs only appear

once among all applications and they are meaningless

for detecting malwares. In addition, there are also some

APIs which appeared in almost every application. Those

APIs are also not meaningful enough to help us pick

out the malwares. Therefore, new models are being

considered and built. Based on the logic of HinDroid,

we try to develop some new matrices to replace the

original matrices which will have a faster speed and

similar accuracy.

4.3.1 Reduce API / Pack. The inspiration of thismethod

comes from the MAMADROID [5]. Instead of using the

whole API call, API name and API library have been

selected separately. The number of unique API calls for

around 2000 applications are originally over 1,000,000.

We design two new matrices based on the separation

of values in an API call, which is shown in Figure 2.

• Reduce API: This matrix only contains the API

Name, which is the red part in the example. The

newmatrix size is around 130,000 x 130,000, which

is way smaller than the original A matrix.



Yikai Hao, Yu-Chieh Chen, and Ruoyu Liu

Figure 3: Database

Type API called once (sum/app) Number of API Number of Class Number of APP
Malware 29.05 792.08 284.32 905

Popular 689.09 8214.12 3930.60 324

Random 340.34 6387.03 2893.34 581

Table 1: Data statistics

#UniqueAPI #Unique API Lib #Unique API Name #Unique API Return Type
Malware 792.08 277.34 359.55 172.18

Benign 7041.15 2551.21 2571.26 1485.79

Table 2: API Statistics

Figure 4: Log Scaled of Unique API Return Type

• Reduce Pack: This matrix only contains the API

Library, which is the blue part in the example. The

new matrix size is around 350,000 x 350,000. The

size is about 2/3 smaller than the original Amatrix

4.3.2 TF-IDF. Besides ReduceAPI and Reduce Pack, we
are also considering can we select out some APIs which

are considered “important” for detecting malwares. The

method we choose is TF-IDF(term frequency - inverse

document frequency). It is a useful method to check the

importance of a word for a document. We generate a

corpus list which each element in the list is representing

a corpus for an application. In each corpus, it contains

all API calls. We then use the TF-IDF to get a token

score for each API call. After calculating the mean score

over all corpus, part of the API calls are selected out

according to their rank. The numbers we select out are

Top1000, Top2000, Top5000, and Top10000.



Malware Detection

Top3 API Example Rank by TF-IDF

Ljava/lang/StringBuilder;->append()

Ljava/lang/StringBuilder;->toString()

Ljava/lang/Integer;->valueOf()

Table 3: TF-IDF Top 3 API Example

4.3.3 New Features. New features are also being con-

sidered to build new matrices. We use the return type

as our new feature and build a matrix called R. The

element in the R matrix represents whether two appli-

cations are using the same return type. R matrix can

replace the original A matrix and its size is only around

170,000 x 170,000. As the feature description part shown,

the return type is also a useful feature to detect mal-

wares. Additionally, in order to build a new kernel for

the R matrix, the new B_R matrix represents whether

two return types are in the same code block. Therefore,

we have two different kernels - RR and RB_RR What’s

more, we also built a new I matrix after finishing the

API reduction. This also provides more kernel options

while putting the features into classifiers.

We design lots of new matrices which can replace the

original A matrix using new features or reduced num-

ber of APIs. Those matrices will be used when we are

building kernels.

4.4 Word2Vec
Word2Vec is the new vector embedding we generate.

This model is a powerful NLP model to help us find not

only the direct relationship between apps but also the

cluster connection between apps using the graph, which

is a different approach to solve the malware detection

problem with HinDroid.

Our Word2Vec takes AA⊤
as an input and builds a

graph based on the AA⊤
. Therefore, the graph contains

two components - applications and apis. We then gen-

erate sentences as our input for the Word2Vec model.

Firstly, we randomly pick an app out, then we follow

the path in the graph to search for the next api and

app. We will end our path with an app. The length of

the path will be a number randomly chosen within the

range of maximum length.

For example, with a maximum length of 5000 and a

metapath AA⊤
, the possible text generated will be like:

APP1 −> API234 −> APP34 −> API12 −>

After finishing the sentence generating process, we will

implement the genism’s Word2Vec model to get our

vector embeddings for every application and api. The

final vector embeddings will be easily used in different

machine learning models.

We use data visualization to check if our model makes

sense. Our plot shows the vector embeddings after the

dimension reduction using a method called t-SNE(t-

distributed stochastic neighbor embedding). Thismethod

can project a high dimensional vector into a two dimen-

sional space. t-SNE uses Barnes-Huts approximations

to reduce the dimensions. As the graph shows (figure

5), the distribution of malwares and benigns are sepa-

rated. Benigns are condensed at the left side with small

x and y values. However, malwares are distributed at

the right side, with a large x value and widespread y

value. From the information on the graph, the model

can detect malwares well. Although a few points are

mixed in the graph, they might be separable in higher

dimensions.

Figure 5: Word2Vec Embedding Visualization

4.5 Node2Vec
The only difference between Node2Vec and Word2Vec

is the random walk procedure. This change improves

the inability of Word2Vec and tracks the path with no

specific rules about where to go.

We use all A, B, and P matrices to build our Node2Vec.

Since the B and P matrices both represent the relation-

ships between apis, we combine the two matrices into



Yikai Hao, Yu-Chieh Chen, and Ruoyu Liu

one larger matrix to replace the B and P matrices. The

values within the large matrix represent whether two

apis have some relationships, no matter whether they

are within the same code block or use the same package.

For the probability of random walks, there are three

types of probability. For example, we have a path from

t -> v shown in figure 6. When choosing the next step

for v, we have three different probabilities. If we get

from v -> t, we have a probability of 1/p. In addition, if

the next node from v has a connection with t, then the

probability of the node will be 1. Other nodes will have

a probability with 1/q. We then implement sentences

into the genism’s Node2Vec model. The p value we

select in our Node2Vec is 1 and the q value we select is

1/2. We choose a larger p value since we do not want

our path going back to its previous node.

Figure 6: Node2Vec Formula

Similar to Word2Vec, we also plot out the vector em-

beddings after finishing the dimension reduction (figure

7).

Figure 7: Node2Vec Embedding Visualization

4.6 Metapath2Vec
Methpath2Vec is an extension of Node2Vec on hetero-

geneous graphs. The difference between Metapath2Vec

and Node2Vec is that the Metapath2Vec assigns a path

for the random walk and decides where the next node

to go. The Metapath2Vec model uses all A, B, and P ma-

trices. The sampling method of Metapath2Vec is based

on the equation (1), which means the next node will be

accessed if the edge exists and the node belongs to the

correct type. For example, if the path given is ABA⊤
,

we will generate a sentence from an app to an api first.

Then we will check the next node is an api which is in

the same code block with the previous api. Finally, our

path will go to another app. We repeat this loop until

we reach the maximum length we set or have no next

node.

We then implement sentences into the genism’sWord2Vec

model. After the dimension reduction process is done,

the embedding plot is shown in figure 8.

𝑝 (𝑣𝑖+1 |𝑣𝑖𝑡 ,P) =


1

|𝑁𝑡+1 (𝑣𝑖𝑡 ) |
(𝑣𝑖+1, 𝑣𝑖𝑡 ) ∈ 𝐸, 𝜙 (𝑣𝑖+1) = 𝑡 + 1

0 (𝑣𝑖+1, 𝑣𝑖𝑡 ) ∈ 𝐸, 𝜙 (𝑣𝑖+1) ≠ 𝑡 + 1

0 (𝑣𝑖+1, 𝑣𝑖𝑡 ) ∉ 𝐸

(1)

Figure 8: Metapath2Vec Embedding Visualization

5 RESULT
Below are the results of different models.

5.1 Classifiers
After different models are built, SVM(Support-Vector

Machines), Random Forest, and Gradient Boosting are

selected as classifiers while doing the final malware



Malware Detection

detection. SVM is the baseline classifier we choose. It

uses different matrices as custom kernels to classify

the type of applications. Random Forest and Gradient

Boosting both use decision trees as their base. Decision

tree is a tree model in which each node represents a

decision rule that separates the dataset. Random forest

uses the idea of “Bagging”. It builds lots of decision trees

at the same time using a subset from the dataset. Then,

Random Forest will combine the result with weight and

produce the final prediction. Gradient Boosting uses

another idea called “Boosting”. It will also build lots

of decision trees. And Gradient Boosting will update

the newest model by making improvement on the last

model.

The classifier with highest accuracy will be chosen

as the classifier of a specific model. As the result ta-

ble shows, most classifiers will be SVM. However, the

Node2vec model shows a preference on Gradient Boost-

ing.

5.2 Result Tables
As the table 4, train accuracy, test accuracy, and F1 score

are the values to evaluate the performance of the model.

We also include False Positive and True Negative count

to check which kind of error will the model make.

As the result table 4 shows, the best performance is

the original HinDroid model withAA⊤
kernel and SVM

classifier. It can achieve a test accuracy around 99%with

only three benigns misrecognized as malwares. And

the reduced API with top 2000 APIs selected by TF-IDF

also has a similar accuracy. It can achieve a 99% test

accuracy by AA⊤
kernel and SVM classifier.

The table 4 also shows that most of the models per-

form best under more baseline kernel and classifier.

With a kernel AA⊤
and classifier SVM, most models

reach their highest test accuracy. However, using differ-

ent kernels like ABA⊤
or APBP⊤A⊤

, the classifier will

switch to Gradient Boosting or Random Forest with a

slightly lower test accuracy.

In addition, when comparing the results of reduced

API kernels we build for new models, we find out that

the accuracy is high enough to do prediction. Most of

them have a test accuracy around 99%, which is higher

than models based on graphs. Graph models, including

Word2Vec, Node2Vec, and Metapath2Vec, are perform-

ing the poorest among all models, shown in table 5.

With a much less time complexity, reduced API kernels

can be considered as a powerful tool to replace basic

HinDroid with similar test accuracy.

Most models perform better on detecting malwares.

However, most of the mistakes in identifying the type

of applications make on benigns. As the table indicated,

most False Positive values are much higher than False

Negative values. As a malware detection model, our

model should be more focused on detecting every mal-

ware out. Therefore, having some misclassified benigns

within an acceptable rate is allowed. Multi-kernel might

not be a useful improvement since the original Hin-

Droid model already has the best performance on False

Positive.

5.3 Research on Misclassified App
After seeing the result, we do some research on the mis-

recognized applications. As the table 6 shown, the orig-

inal HinDroid model with metapath AA⊤
and classifier

SVM only missed 3 applications. Those three applica-

tions are considered to be False Positive, which means

that they should be benigns but identified as malwares.

We select those 3 applications out and find that they are

all in the category Random application. By checking the

features used for malware detection and comparing it

with the 25% - 75% range for bothmalwares and benigns,

those applications are at the boundary of malwares and

benigns. Therefore, it is reasonable for the classifier to

misrecognizing those applications. In addition, as the

Data Description section mentioned, random applica-

tions are selected randomly out of apkpure. There is a

small possibility that those three applications are actu-

ally malwares. There is a small possibility that those

three applications are actually malwares.

6 CONCLUSION
In this report, we implement different methods for mal-

ware detection. Based on the weakness we find in us-

ing HinDroid, we also design some new matrices and

kernels in order to save space and time. As the result

section shows, the outcome is positive. With a much

smaller matrix and time complexity, the new model

can perform as well as the original HinDroid model.

Although graph-based models do not perform as well

as kernel based models, they are achieving a high ac-

curacy around 95%. Graph is still a useful strategy to

1
GB: Gradient Boosting

2
RF: Random Forest



Yikai Hao, Yu-Chieh Chen, and Ruoyu Liu

Model Kernel Classifier Train Acc Test Acc F1 FP FN
HinDroid AA SVM 1.0 0.9917 0.9919 3 0

ABA GB
1

0.9917 0.9419 0.9440 13 8

APA SVM 1.0 0.9779 0.9788 8 0

APBPA RF
2

1.0 0.9337 0.9358 14 10

Reduce API Name AA SVM 1.0 0.9834 0.9839 5 1

ABA RF 1.0 0.9419 0.9442 14 7

Reduce API Pack AA SVM 1.0 0.9889 0.9893 4 0

ABA GB 0.9965 0.9419 0.9415 17 4

TF-IDF 1000 AA SVM 1.0 0.9861 0.9865 2 3

AIA RF 1.0 0.9143 0.916 14 17

TF-IDF 2000 AA SVM 1.0 0.9917 0.9919 2 1

ABA RF 1.0 0.9475 0.9493 12 7

APA SVM 1.0 0.9834 0.9839 5 1

APBPA DT 1.0 0.9309 0.9326 13 12

ABPBA SVM 1.0 0.9806 0.9812 5 2

AIA RF 1.0 0.9198 0.923 18 11

ABPIPBA GB 0.9261 0.9088 0.9133 22 11

TF-IDF 5000 AA SVM 1.0 0.9889 0.9892 3 1

AIA GB 0.9488 0.9198 0.9238 20 9

TF-IDF 10000 AA SVM 1.0 0.989 0.9892 3 1

AIA GB 0.9537 0.9171 0.9215 21 9

API Return Type RR SVM 1.0 0.9862 0.9867 5 0

RBR GB 0.9896 0.9282 0.9319 19 7

Table 4: Model Statistics

Model Metapath Classifier Train Acc Test Acc F1 FP FN
Word2Vec AA GB 0.9993 0.9475 0.9501 15 4

Node2Vec AA RF 1.0 0.9420 0.9440 13 8

All GB 0.9965 0.9475 0.9501 15 4

Metpath2Vec AA GB 0.9717 0.9448 0.9465 12 8

ABA GB 0.9869 0.9337 0.9371 18 6

APA GB 0.9931 0.9448 0.9474 15 5

APBPA RF 0.9848 0.9088 0.9147 25 8

Table 5: Graph Statistics

consider while detecting malwares since it can catch

the cluster relationship among applications.

There is lots of future exploration that can be done

based on current results. For example, we can imple-

ment the multi-kernel idea to combine high accuracy

models together in order to improve our overall accu-

racy. The reducing API by using TF-IDF can also be

applied to other research areas while we want to save

time complexity. New matrix with return types as its el-

ement also performs well on test accuracy. Thus, some

further studies can be done on this feature. We can

also extract out most common applications which are

misclassified and understand the reason behind it.



Malware Detection

# of Uni Lib + Name # of Uni API Name # of Uni API Pack # of Uni Return Types
Missed APP1 4064 2001 1281 728

Missed APP2 2346 1068 729 429

Missed APP3 2270 1035 683 413

Benign (Q1-Q3) 4062-9851 1395-3602 1446-3667 884-2069

Malware (Q1-Q3) 96-1224 71-174 38-433 34-276

Table 6: Misclassified Analysis

REFERENCES
[1] YuxiaoDong, Nitesh V. Chawla, andAnanthram Swami. “Meta-

path2vec: Scalable Representation Learning for Heteroge-

neous Networks”. In: Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining. KDD ’17. Halifax, NS, Canada: Association for Com-

puting Machinery, 2017, pp. 135–144. isbn: 9781450348874.

doi: 10.1145/3097983.3098036. url: https://doi.org/10.1145/

3097983.3098036.

[2] Aditya Grover and Jure Leskovec. node2vec: Scalable Feature
Learning for Networks. 2016. arXiv: 1607.00653 [cs.SI].

[3] Shifu Hou et al. “HinDroid: An Intelligent Android Malware

Detection System Based on Structured Heterogeneous Infor-

mation Network”. In: Proceedings of the 23rd ACM SIGKDD

International Conference on Knowledge Discovery and Data
Mining. KDD ’17. Halifax, NS, Canada: Association for Com-

puting Machinery, 2017, pp. 1507–1515. isbn: 9781450348874.

doi: 10.1145/3097983.3098026. url: https://doi.org/10.1145/

3097983.3098026.

[4] Tomas Mikolov et al. Efficient Estimation of Word Representa-
tions in Vector Space. 2013. arXiv: 1301.3781 [cs.CL].

[5] Lucky Onwuzurike et al. “MaMaDroid: Detecting Android

Malware by Building Markov Chains of Behavioral Models

(Extended Version)”. In: ACM Trans. Priv. Secur. 22.2 (Apr.

2019). issn: 2471-2566. doi: 10 . 1145 / 3313391. url: https :

//doi.org/10.1145/3313391.

https://doi.org/10.1145/3097983.3098036
https://doi.org/10.1145/3097983.3098036
https://doi.org/10.1145/3097983.3098036
https://arxiv.org/abs/1607.00653
https://doi.org/10.1145/3097983.3098026
https://doi.org/10.1145/3097983.3098026
https://doi.org/10.1145/3097983.3098026
https://arxiv.org/abs/1301.3781
https://doi.org/10.1145/3313391
https://doi.org/10.1145/3313391
https://doi.org/10.1145/3313391

	Abstract
	1 Introduction
	2 Related Work
	3 Data Overview
	3.1 Data Source
	3.2 Data Description
	3.3 Smali File
	3.4 API Calls
	3.5 Data Extraction
	3.6 Database
	3.7 Data Statistics

	4 Model
	4.1 Feature distribution
	4.2 HinDroid
	4.3 New Model
	4.4 Word2Vec
	4.5 Node2Vec
	4.6 Metapath2Vec

	5 Result
	5.1 Classifiers
	5.2 Result Tables
	5.3 Research on Misclassified App

	6 Conclusion

