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ABSTRACT
Many have probably found themselves in an uncomfortable conver-
sation in which a parent is questioning why the song playing over
a bedroom speaker is so loud, repetitive, or profane. If someone has
never had such a conversation, at the very least they have probably
made a conscious decision to refrain from playing a certain genre
or artist when their parents are around. Knowing what music to
play in these situations does not have to be an elaborate, stressful
process. In fact, finding appropriate songs can be made quite simple
with the help of recommendation systems.

Our solution to this issue actually consists of two recommenda-
tion systems that function in similar ways. The first takes music
that parents enjoy and recommends it to their children. The second
takes music that children enjoy and recommends it to their parents.
Both of these recommendation systems create their own individual
Spotify playlists that try to “bridge the gap” between the music
tastes of parents and their children. Through user testing and user
interviews we found that our recommenders had mixed success
in creating playlists that could be listened to by children and their
parents. The success of our recommendations seemed to be largely
correlated with the degree of inherent similarity between the music
tastes of children and their parents. So while our solution is not
perfect, in situations where overlap between parents and children
exist, our recommender can successfully “bridge the gap”.

1 INTRODUCTION
It is not uncommon for teenagers and young adults to have dis-
agreements with their parents. Usually these points of contention
involve things like chores, curfews, and other byproducts of living
under the same roof. However, these discussions may occasionally
spill over into other areas of life, namely choice of music. Teenagers
can often find themselves in uncomfortable situations where the
songs they play are too loud, unfamiliar, or profane for their parents.
In order to avoid these scenarios, teens must keep a mental record
of what music their parents disapprove of and where this music is
contained in their playlists and music libraries. Some teens might
rather opt for complete silence in the presence of their parents than
keep track of all this information. Finding music to play around
one’s parents does not have to be such a complicated or stressful
process. In fact, this process can be made quite simple with the
help of a recommendation system. To solve the disputes caused by
music between teenagers and their parents, we have developed the
music recommender website, bridgingthegapwithmusic.com. This
web application leverages information from our users, teenagers
and young adults, to quickly recommend music that they can listen
to and enjoy with their parents.

Figure 1: Billboard’s Song Distribution By Year

Our recommendation system is designed to do two main tasks:
recommend parents’ music to users, and recommend users’ music
to parents. Each of these tasks has their own unique algorithm
that generates a final playlist of recommendations on the user’s
Spotify account. Both recommendation algorithms try to find a
rough middle ground between user and parent music tastes. With
this in place, the user is able to quickly and automatically generate
playlists which can be safely listened to and enjoyed in the presence
of their parents.

2 DATASETS
2.1 Billboard
For the sample playlist generation for parent-to-user recommenda-
tions, we use the Billboard Weekly Hot 100 Singles dataset1, which
contains the top 100 songs every week from 1958 to 2019 (Figure 1).
The columns of the dataset include: url, WeekID, Week Position,
Song, Performer, SongID (concatenation of Song and Performer),
Instance (number of times the song has appeared on the chart; each
song starts with 1 and increments every time it disappears and
reappears on the chart), Previous Week Position, Peak Position, and
Weeks on Chart. There are 320,000 rows in the dataset containing
statistics about 28,000 distinct songs. To generate features used
in the recommender, we grouped the data by SongID to get the
average week position, the first week it appeared on Billboard, the
last week it appeared on Billboard, as well as the number of weeks
it has been on the chart.

1https://data.world/kcmillersean/billboard-hot-100-1958-2017
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Figure 2: Last.fm’s User Distribution By Age

2.2 Last.fm
For both parent-user and user-parent recommendation tasks, we
work with two datasets from Last.fm2, a music website based in the
U.K., to get their users’ listening history. The first dataset contains
user profile data for all Last.fm users. After cleaning the dataset
to deal with missing values, there are about 284,000 distinct users
in the dataset with profile information including: UserID, gender,
age, country, and date registered (joined Last.fm). We filter the
dataset based on country to work primarily with recommending
songs to people who live within the United States which reduces
the number of users to around 52,000. For user ages, we could see
that the users skewed younger with the majority between 20 to 40
(Figure 2). The second dataset contains the user listening history
including columns: User ID, Artist ID, Artist Name, and Number of
Plays. There are about 17 million entries in the entire dataset, and
about 2.5 million entries when filtered by users living in the United
States.

2.3 Spotify
Spotify3 has a significant amount of information about artists and
their music and we use Spotify’s API to access this information
and integrate it into our existing data. Our primary use of the
Spotify API is to pull user listening information. Unfortunately,
Spotify only allows access to the 50 most recent observations in a
user’s listening history, so instead we scrape a user’s playlists to
understand the different artists that they listen to. This does not
provide as much information about the frequency of certain artists
in a user’s listening history, but considering the alternative it is a
much better source of information.

We also use the API to pull artist objects that contain information
about what genres an artist is defined by, and what other artists
are related to them. We use this information in both of our rec-
ommenders so that we can filter recommended artists by user or
parent genre preferences. The related artist information is used to
broaden our artist recommendations and include artists that are
not present in any of our datasets or the user’s listening history.

2https://www.kaggle.com/neferfufi/lastfm
3https://developer.spotify.com/

Spotify also provides sonic information for all of the tracks listed
on their platform in the form of track objects and audio feature
objects. These objects contain features that describe a song in terms
of its key, tempo, acousticness, and so on. These features are mainly
used for some elements inside our parent-to-user recommendations,
but other than that our project does not make much use of them.
The track object also states whether a song is explicit or not which
allows us to filter our recommendations to exclude profanity or
other explicit content.

2.4 User Input
Prior to generating recommendations, we ask our users for some
information regarding their parents. Since we make the assumption
that parents do not have a Spotify account with listening history
that we can leverage, we must ask these questions so we have
some understanding of the parent’s music taste. These questions
are essentially limited to the parent’s age, preferred genres, and a
preferred artist. Parent age is used to approximate the era a parent
grew up in and therefore the music they might have listened to
growing up. The preferred music genres and the preferred artist are
used to help our recommender understand what genres the parent
is interested in, and to filter out any irrelevant recommendations.

3 METHODS
The recommender is split into two parts for different purposes:

(1) parent-to-user recommendations,
(2) user-to-parent recommendations

An optional sample recommender step exists for parents (or users)
who do not have a Spotify account, or do not have enough listening
history for us to work with.

3.1 Sample TopPopular Recommender
For this sample recommender, we use a TopPopular recommender
where we rank the “popularity” of each song in the Billboard dataset
and return the most popular songs (Figure 3). All songs in Billboard
are filtered first by their release dates: we assumed the relevant
timeframe for the parent’s age to be from when they were 15 years
old, to when they were 30 years old based on the premise that an
individual’s music preference is determined around age 15 and that
they stop listening to new songs by the age of 30 [6]. The songs
are then filtered by the parent’s preferred genres and artists, and
ordered by their popularity, which is determined by three statistics:
instance, average weekly position, and the number of weeks the
song was on the chart. The songs are ordered by lowest instance,
lowest average weekly position and highest number of weeks to
exclude seasonal songs like Christmas carols with high instance
values, and prioritize songs that were ranked higher on the chart
for longer. The final output contains the top songs that take the
parent’s input into account.

3.2 Parent-User Hybrid (CF+CBF)
Recommender

The parent-to-user recommender uses a hybrid approach, mean-
ing that it uses both collaborative filtering (CF) and content-based
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Figure 3: Workflow of Sample Recommender

Figure 4: Workflow of Parent-User Recommender

filtering (CBF) techniques to recommend songs (Figure 4). We de-
cided not to rely solely on CF methods unlike our user-to-parent
recommender, due to the Last.fm dataset having a limited number
of users aged over 40, which is where our parents are more likely
to fit in.

The CF part of this hybrid recommender uses LightFM [3], a
Python library using matrix factorization for implicit and explicit
feedback. Using Spotipy [4], the Python library for Spotify’s Web
API, we get the parent’s top 50 tracks on Spotify, get the artist for
each track as well as the number of songs each artist had produced
in the 50 songs. The Last.fm data also contains each user’s listening
frequency for each artist, so we use this frequency as the ‘weight’
for each item, meaning that the artist that is more listened to by the
parent would be of more importance. We decided to use LightFM for
the CBF part of this model as it uses latent representation to address
the cold-start problem by grouping items that are liked by the same
users, even if the items do not share similar features. To reduce the
amount of data we work with and to improve the recommender’s
performance, we ask the parent for their user/children’s age and
only get Last.fm data within a similar age range as the user, getting
users that are up to 2 years younger or older than the child user.
Each user-artist interaction in both the parent’s listening history
as well as the Last.fm data is a positive interaction (instead of a
negative interaction, where a user specifies that they did not like
the item) used to build LightFM’s recommender model, which also
stores every user and artist in the interactions. LightFM essentially
works by representing each user and item fed into the model as the
sum of latent representation, and finding the dot product of those
representations using the equation:

𝑟𝑢𝑖 = 𝑓 (𝑞𝑢 ∗ 𝑝𝑖 + 𝑏𝑢 + 𝑏𝑖 ) (1)

where 𝑞𝑢 represents the user’s latent representation (= sum of
latent vectors), 𝑝𝑖 represents the item’s latent representation, and
with𝑏𝑢 and𝑏𝑖 each representing bias terms for the user and the item
[2]. We chose WARP (Weighted Approximate-Rank Pairwise) for
the loss function as it resulted in a higher AUC than BPR (Bayesian
Personalized Ranking), the only other loss function suitable for
having only positive interactions available as data. For each user
in the model, the artists are ranked by the dot product; we get the
artists with the highest dot product value as an output from this
model.

Although LightFM has CBF functionality, we found out that its
item features implementation does not work properly and could not
be used for CBF. Thus, for the CBF part of this recommender, we
decided to use euclidean distance (instead of a common CBFmethod
like cosine similarity, suggested by Rethana [5]). to calculate the
distance between other songs and the parent’s top tracks, using
their audio features from Spotify. From the LightFM’s output list
of artists (the number of artists is defaulted to 10 for convenience,
since Spotify’s API only allows pulling audio information for up to
100 songs at a time), we get the top 10 popular songs from each artist
and compile a list of 100 songs. Then we calculate the euclidean
distance between those songs and the parent’s preferred songs,
using the formula:

𝑑𝑝𝑞 =

√√√ 11∑
𝑖=1

(𝑝𝑖 − 𝑞𝑖 )2 (2)

where 𝑝𝑖 and 𝑞𝑖 are the ith audio features from arbitrary song
p and parent’s song q, from 11 features: danceability, energy, key,
loudness, mode, speechiness, acousticness, instrumentalness, live-
ness, valence, and tempo. We get the minimum Euclidean distance
for each song in the recommended list from all of the parent’s songs,
and rank the songs by their shortest distance from any parent’s
song. The final output is a list of songs ordered by ascending eu-
clidean distance, to recommend songs that are most similar to the
parent’s preferred songs in terms of audio features to the user.

3.3 User-Parent Collaborative Filtering (CF)
Recommender

With our user-parent recommender (Figure 5), we first request
information from the user about their parent including their age,
favored genres, and favorite artist. To build the user to parent
recommender, we work primarily with the Last.fm data. Since we
want to recommend to parents, we want to build similarity between
the user and the parent so the playlist output would be enjoyed by
both the user and the parent.We do this by extracting the users from
the parents’ age range from the Last.fm user profile dataset (user_id,
age, country, etc).We pull these Last.fm users’ listening history from
the Last.fm listening history dataset (user_id, artist_id, artist_name,
plays) which helps to provide a basis for the recommender. We
then want to pull from the user’s listening history, specifically user
playlist data which we can use to approximate a listening history
similar to the one found in the Last.fm listening history dataset.
We generate a user-artist interaction matrix using the user playlist
data such that it is analogous to the user-artist interaction matrix
created.
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Figure 5: Workflow of User-Parent Recommender

After gathering the user’s listening history, we can use the user’s
listening history to find similarities between the user and the users
from the parents’ age range in the Last.fm dataset. We also want
to normalize the plays (frequency) column for the listening his-
tory so we have a common scale and there are less concerns about
bias. We then move to create categories (assign numbers) for each
unique user and artist in the dataset to clean the data and also
transform the dataset so we can build the user-item interaction and
item-user interaction matrix. The user-item interaction matrix has
shape [num_user ∗ num_items] and the item-user matrix has shape
[num_item ∗ num_user]. We implement this data transformation
such that the [ith, jth] entry of a user-item interaction matrix is the
rating of the ith user for the jth item and that is similarly applied to
the item-user interaction matrix. We then combine both the Last.fm
user-artist interaction matrix with the user-artist interaction ma-
trix generated with the user’s playlist data to have a user-artist
interaction matrix ready for the collaborative filtering model.

We then use Implicit [1, 2] using alternating least squares to
build similarity between the user’s playlist and older users (users
in the parent’s age range) in the LastFM dataset. For our implicit
feedback model, we use plays as our “rating.” Once we fit the model,
we can now build recommendations for the particular user, in this
case the user who has requested a playlist for their parent, and
a list of recommended artists is returned. In our initial responses
collected by the user, we collected the parent’s favored genres so
we use that data to filter down the recommended artists. We use
Spotipy [4] to collect the genre for each artist and we then filter
the list of recommended artists down to artists that are represented
by the favored genre of the parent. We can then use Spotify’s top
tracks to build a playlist from these filtered recommended artists to
get a final list of songs that is outputted to a playlist on the user’s
Spotify account.

4 RESULTS
For the parent-user recommender, we evaluated LightFM, the CF
part of the recommender, using AUC and NDCG. AUC, or Area
Under the Curve, refers to the probability that a classifier will
rank a randomly chosen positive instance higher than a randomly
chosen negative one . Generally speaking, a higher area under
the curve means a more effective recommendation system. The
LightFM model resulted in a training AUC of 0.988, and test AUC of
0.618 (Table 1). NDCG, or Normalized Discounted Cumulative Gain,
is a measure of ranking the quality of a recommender system by the
difference in actual rankings and predicted rankings. Unfortunately,

we were unable to evaluate the entire hybrid recommender as the
CBF part recommends songs instead of artists like the CF part does,
but evaluating the CBF method using a sample user’s top 10 songs
resulted in an NDCG of 0.80.

When evaluating the user-parent recommender, we relied on
both offline testing as well as user feedback studies. For offline test-
ing, we used the metric AUC or area under the curve to evaluate
the recommender. When evaluating the implicit feedback recom-
mender, we found that the AUC would average around 0.8-0.82
which suggested that it was generally effective (Table 1).

Table 1: Performance of Our Recommenders

Recommender Training/Test AUC NDCG@10

Parent-User CF 0.988/0.618
Parent-User CBF 0.80
User-Parent CF /0.8-0.82

To broaden our understanding beyond metrics we conducted
user studies where we collected feedback from users about their
experiences with our both recommenders. What we found was
that the effectiveness of our recommendations was closely tied
to the inherent similarity between users and their parents music
preferences.When therewas significant overlap in genre preference,
both users and parents enjoyed the playlists they received. However,
as the differences between parents and their children increased the
enjoyment of our recommendations also somewhat decreased. The
drop in enjoyment was especially noticeable when there was a
complete difference in music preferences between the two parties.
Our best example of this is an instance where the user’s parents
listened to singer/songwriter artists, but the user only listened to
EDM and other genres of rave music. Since there was such a drastic
difference in the genres and artists our recommender failed to find
any commonalities or slight mutual interests. In these situations
the recommender leans towards the interests of the parents, so at
the very least the user can listen to the playlist around their parents
even though theymight not enjoy themusic that was recommended.
This means that at its worst, our recommender can accomplish our
goal of giving users something to put on around their parents, but
it cannot fulfill the goal of having both parties enjoy what is being
played.

5 CONCLUSION
When first approaching the problem of music recommendations, we
wanted to address disparities in music taste. We could see instances
in our own lives where disparities in music taste might lead to
conflict, especially with our own parents. This realization served
as our motivation for developing bridgingthegapwithmusic.com,
since automated recommendations could simplify the process of
finding music for both younger and older audiences to enjoy. In
our recommender, we attempt to solve this problem through two
approaches: recommending music from 1) parents to users and 2)
from users to parents.

(1) In our first approach, we find songs that parents would enjoy
and recommend similar songs to their children. We do this
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using Billboard rankings as well as parent Spotify history
to generate a basis for what we expect parents to enjoy. We
then request data about the children, like their favorite genre,
to build similarity between the parent’s songs and the user’s
music taste.

(2) In our second approach, we find songs that children en-
joy and recommend similar songs to parents. We use the
children’s Spotify listening history and request information
from the parent, like their age, to build similarity and offer
recommendations.

When evaluating our recommenders with user feedback, we
found that our algorithms performed well when there was some
degree of overlap between users and their parents. As that overlap
begins to disappear the enjoyment of our recommendations tends to
decrease. Whenever the differences between a user and their parent
become so extreme that there is little to no overlap, or algorithms
struggle to produce recommendations that can be enjoyed by both
parties. In general our recommender can consistently generate
music that can be played around one’s parents. Whether or not
children and their parents can enjoy this music together largely
depends on the overlap between their music preferences.

In the future, our project could be expanded to include more
comprehensive features rather than relying principally on collabo-
rative filtering techniques. One potential pathway forward could
be to emphasize sonic characteristics more. We include these char-
acteristics partially in our parent-user hybrid model, but we do not
use them anywhere else in this project. Using these characteristics
might help to lessen the impact of inherent genre preference differ-
ences by looking for more abstract and unnoticeable similarities
between the music preferences of children and their parents. An
entirely different way forward could be to look at the situation
from a different perspective entirely and try to nudge the music
preferences of children and their parents together closer over time.
This could function in a way where both parties are given new
playlists every week that slowly come closer together in genre or
sonic characteristics, literally bridging the gap between parents and
children over time. Regardless of what is done next, it is clear that
there is an abundance of potential improvements that have yet to
be tested or explored in our niche of music recommendations.

6 USER INTERFACE
The UI for bridgingthegapwithmusic.com is relatively simple. The
homepage has a short mission statement followed up by a brief
description of our recommendation algorithms. Links to each of our
recommendation algorithms sit at the bottom of the page. There
are other tabs in the navigation bar at the top of the page that link
to more information about the project (Figure 6).

When a user clicks on one of the recommendation algorithms
they are taken to a short form. This is where we ask the users for
the limited amount of parent information that our algorithms need.
Once the users submit their information, they are taken to another
page where they wait for their playlist to be generated (Figure 7).

Once the algorithms are finished generating recommended songs,
they are added to a playlist created on the user’s Spotify account.
The playlist is named after the corresponding algorithm that was

Figure 6: Home Page - Description of Recommender and
Tasks

Figure 7: Requesting Information from User

Figure 8: A finalized playlist on Spotify
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used and the description states the features that were used to gen-
erate it (Figure 8).
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