

Asnapp - Workout Video Recommender
Amanda Shu, Najeem Kanishka, Peter Peng

Project Description
For those who work out at home, finding a good workout routine is difficult. It is hard to
constantly have to find workout videos that meet your fitness needs, as well as your time and
equipment constraints. Plus, the pre-set workouts found online are not one-size-fits-all. In
other words, while there are many workout videos online to choose from, these choices are
non-personalized. Our project, Asnapp, is a solution that can solve all these problems, as well
as meet the growing need for an easy way to build a good at-home workout routine during the
pandemic.

Asnapp is a web application that provides personalized recommendations of workout videos by
Fitness Blender1. Our website displays several lists of recommendations (similar to Netflixʼs
user interface), such as “top upper body workouts for you”. Users can login into our website,
choose between several models to generate their recommendations, browse through
personalized recommendations lists, and choose a workout to do, saving them the time and
effort needed to build a good workout routine.

Report Overview
From Fitness Blenderʼs website, we scrape workout related data from all of their free workouts,
as well as the Fitness Blender usersʼ comments on each of their workout webpages. We use the
comments data to avoid the cold start problem, as it serves as a proxy for user-item interactions
needed to train the models with. Thus, we would be able to train models even before building
our web application and deploying to users. We further describe the data collection and
preprocessing steps in the Data section.

We then perform offline testing and evaluate three recommendation models (random, top
popular, and a pure collaborative filtering model by LightFM2). The models are trained with
the user-item interaction information from the comments data and evaluated on the NDCG
metric (normalized discounted cumulative gain). We describe our model implementations and
their performance results in the Models section.

Finally, we built a web application, where users can login and view their workout video
recommendations. The application is connected to a database that collects our usersʼ
preferences and workout history information. The database has our previously scraped
workout video and comments data uploaded to it as well. The three models we previously
evaluated are deployed, and users are able to choose which model to get recommendations
from. Since we do not expect to have enough user-item interactions data from our own users,
we train the models on both the scraped comments data and the interactions data from Asnapp

1 Fitness Blender is a company that provides free workout videos.
2 LightFM is a Python package containing implementations of recommendation algorithms.

https://www.fitnessblender.com/
https://making.lyst.com/lightfm/docs/home.html

users in order to generate our predictions. The recommended workout videos displayed will be
only those that match the workout preferences that the user initially inputted, providing
further personalization. We describe the details and implementation of our web application in
the Web Application section.

In the Conclusion section, we summarize Asnappʼs value as well as discuss drawbacks and
potential improvements.

Data3
Data Source: We choose Fitness Blender as our data source, as they have 580 free workout
videos on their website and a large user base (6 million subscribers on Youtube). This means
there will be a sufficient amount of workout videos to recommend and enough user-item
interactions data to train our models with. Fitness Blenderʼs website contains a separate
webpage for each of their workouts, with details on that specific workout, such as the duration,
calorie burn, difficulty, required equipment, training type, and body focus. These webpages
also contain an embedded youtube video and comments from their users (see Appendix A for
screenshots of a workoutʼs webpage on Fitness Blender).

Workout Details: We implement a scraping script that collects details for every free workout
on Fitness Blender. We then clean and preprocess the data, including getting rid of special
characters in strings, applying type conversions for strings meant to be numerical values, and
performing one hot encoding of the equipment, body_focus, and training_type columns. The
workout video attribute details are then written to the data files fbworkouts_clean.csv and
fbworkouts_meta.csv (see Table 1 and 2 in Appendix B for all column names and descriptions).

Youtube Data: Furthermore, with the youtube video ids (interpreted from the youtube links we
scraped), we then query the Youtube API to gather the workout titles, date posted, and number
of likes, shares, and comments for each workoutʼs Youtube video. The data is written to
workouts_yt.csv.

Comments Data: We also scrape the comments section on each Fitness Blender workout
webpage. For each comment, we gather the username and profile picture (if the user has a
profile picture, this value is a link, otherwise it is a single letter) of the person commenting as
well as the time the comment was posted. During the scraping process, the username and
profile picture is combined to create a hashed_id. During preprocessing, we create our own
user_id (integer value) based on the hashed_id. We also drop duplicates such that Fitness
Blender users who commented on the same workout multiple times will not have that
user-item pairing show up more than once in the dataset. We also omit any user who has less
than 54 interactions (commented on less than 5 videos). The final data file that is outputted,
user_item_interactions.csv, contains user-item pairings with columns user_id and workout_id.

3 See our basic exploratory data analysis of the data here
4 There is a parameter d in our preprocessing function to choose the minimum number of interactions
needed to keep the user in the dataset. When d=5, there are 52073 total interactions from 4026 users with
580 workout videos.

https://github.com/amandashu/Workout_Recommender/blob/main/notebook/EDA.ipynb

Model Input: For performing offline testing on the user-item interactions data inferred by
Fitness Blenderʼs commenters, we first perform a random 70%-30% split on the data to get
training and testing datasets. We use LightFMʼs Dataset class to generate the LightFM modelʼs
inputs, which are user-item interaction matrices.

Models
We implement three models as described below:

Random: This recommends workouts randomly. For each workout, we randomly assign a
score between 0 and 1.
Top Popular5: This recommends the most popular workouts based on the number of
comments on a workoutʼs Fitness Blender webpage. The score assigned to each prediction is
the number of comments.
LightFM: This is LightFMʼs pure model, which is a traditional collaborative filtering6 matrix
factorization method.

We evaluate these models on the NDCG metric (normalized discounted cumulative gain) using
scikit-learnʼs implementation. NDCG is frequently used to measure the relevance and ordering
of ranking tasks. It is an appropriate metric to use because our objective is to recommend the
most relevant workouts to a user and thus the ordering of our predictions matter.

We train the models on the training user-item interaction data (users with less than 5
interactions are dropped) and evaluate NDCG (with only the top 20 scores7 considered) on the
testing data8. We note that for evaluating these models, we use LightFMʼs method of creating
the testing user-item interactions matrix as the true label input of the evaluation function
(y_true in scikit-learnʼs ndcg_score). Since LightFM uses their internal indices to identify a
workout (these differ from the workout ids outputted by our top popular recommender), for
evaluating top popular, we also add a mapping function that maps the workouts ids predicted
by the model to LightFMʼs internal indices. The results are displayed in Table 1 below.

Table 1: Model Results

5 We also implement an extension of top popular that includes the data from the Youtube API, but find
that it performs worse (see our notebook here)
6 A collaborative filtering system recommends to a user items that similar users have interacted with but
the user has not previously interacted with
7 k=20, where k is a parameter to scikit-learn's ndcg implementation
8 We also compare scores across various choices of d and k here.

Model NDCG@20

Random 0.017

TopPop 0.099

LightFM 0.098

https://github.com/amandashu/Workout_Recommender/blob/main/notebook/KNN_collab.ipynb
https://github.com/amandashu/Workout_Recommender/blob/main/notebook/param_comparision.ipynb

Although the top popular model and LightFMʼs pure collaborative filtering model both perform
better than the random recommender (which is as expected), the top popular model and
LightFMʼs model perform approximately the same. This is surprising as we expect
collaborative filtering to perform better than a top popular recommender, since the top
popular recommender is non-personalized. We believe this is a result of a vastly sparse dataset.
We also note that we attempted to use the vanilla collaborative filtering algorithm and KNN9,
which scored roughly the same as random guessing and is consequently not included. This
outcome informed us about the possible sparsity of interactions in the data, and the above
results further reaffirm it.

Despite these results, we still choose to deploy all three of these models. Although the random
recommender has poor performance with NDCG, we believe that it provides users with the
option to diversify their workout routine. Also, even though the top popular recommender is
non personalized, we believe that people are naturally drawn to trying what is popular. We
note that Netflixʼs recommendation system also has a top popular recommendation, so is it not
unreasonable to assume that the top popular model will perform well with our users online.
With LightFMʼs collaborative filtering algorithm, we believe it is possible that with the addition
of user-item interaction data coming from our own users, the model will perform better.

Web Application
We built a web application which allows users to create an account, login, choose a
recommendation model, view their recommendations, and like/dislike workouts theyʼve
completed. The back-end is developed using Flask and the front-end with HTML, CSS, and
Bootstrap. The application is connected to a MySQL database using Amazon RDS and is
deployed with Heroku. The Fitness Blender workouts and comments data collected, as
described in the Data section, are all uploaded to the database (see Tables 2, 4-5 in Appendix C).

Login/Registration: When users come to our website, they can either login as an existing user
or register themselves as a new user (see Screenshot 1 in Appendix D). During registration, the
user is asked for their name, email, password, available equipment, as well as their preferred
training types, minimum and maximum calories burned, and duration of workouts (see
Screenshot 2 in Appendix D). The registration form has validators to ensure that no fields are
not filled out, the password and confirm password fields match, and the ranges for calories and
duration are reasonable. After registering, the userʼs information is inserted into the users
table in the database, with their password hashed to ensure privacy (see Table 1 in Appendix C
for user table column information). On the login page, users fill out email and passwords, and
the form validates whether the email exists in the database and that the password matches.
Aftering logging in, the userʼs id is recorded as session data, so that users are still logged in
even when revisiting the website (assuming they do not log out).

Model Deployment: Once logged in, users are redirected to the recommendation page, where
they are able to choose which model to generate their recommendations with (see Screenshot 3
in Appendix D). The three models we previously evaluated are deployed (displayed to the user
as “Random”, “Most Popular”, and “Recommended for you”), using SQL statements for the

9 Our implementation of the KNN collaborative filtering approach can be found here

https://github.com/amandashu/Workout_Recommender/blob/main/notebook/KNN_collab.ipynb

random and top popular recommenders and our previously implemented python function for
the LightFM model. Similarly to before, since the predictions of LightFM use their internal
indices to identify workouts and users, we also add mapping functions that maps LightFMʼs
internal item and user indices to the workout and user ids in our data in order to display the
corresponding workouts for the appropriate user. Both the top popular and LightFM models
are given the combined user-item interactions data inferred from scraped comments on
FitnessBlender and interactions recorded from our users on our website as the input to the
models.

Recommendations: After choosing a recommender, users click a button to view their
recommendations (see Screenshot 4 in Appendix D). The recommenderʼs predicted workouts
are filtered to keep only ones that match the userʼs preferences specified during the
registration process. Specifically, the only workouts kept are the ones that have either no
equipment listed or lists equipment that the user has. Similarly, only workouts that match the
userʼs preferred training types and are within their preferred difficulty range and workout
duration are kept. For calorie burn, if there is some overlap between the userʼs preferred range
and the workoutʼs estimated range, then the workout is kept. The filtered recommendations
are displayed in four lists for the categories upper body, lower body, core, and total body. Each
list shows the top nine ranked workout videos in the respective category (36 recommendations
total). Users can click onto a specific workout, which displays a popup to start the workoutʼs
Youtube video. Inside the popup, users can skip to the next video in the lists and have the
option to like or dislike the workout (see Screenshot 5 in Appendix D). We also allow users to
change the display of workouts, such as only including certain body focuses and choosing how
many workouts to show on the screen (see Screenshot 6 in Appendix D).

Collecting user interactions: If the user clicks on the like button in the popup, this
information is recorded into the user_item_interaction table (Table 2 in Appendix C). We note
that we only consider clicking the like button as an interaction to be added into the table. Thus,
users need to click like on at least one workout in order for our LightFM model to be
executed10. If a user has no previous interactions and choses the “Recommended for you”
option, we default to using a random recommender. If the user clicks on the dislike button, this
is added into a table in our database as well (Table 3 in Appendix C). We also filter out workout
recommendations that a user has disliked.

Updating Preferences and Interaction History: Users can also update their preferences with
the “Update Preferences” feature (see Screenshot 7 in Appendix D). This takes users to a form
similar to the original registration page, but it is prefilled to include their current workout
preferences. When submitted, the userʼs information in the database is updated. Furthermore,
the “Workout History” feature (see Screenshot 8 in Appendix D) takes users into a page that is
similar to the recommendation page but has the option for users to view their previously liked
and disliked workouts. This is particularly useful for users who may want to redo a workout
they previously liked or un-dislike a workout they have previously disliked.

10 The LightFM model is trained on the user_item_interaction table, so the user must first exist in that
table in order to get the userʼs predictions.

Next Steps/Conclusion
We acknowledge there is uncertainty as to whether the NDCG performance of the models
during offline testing (with only data from the Fitness Blender comments), will be similar to
the performance of our deployed recommendation system (which uses the addition of Asnapp
usersʼ data). If the user behavior of the Fitness blender comments matches the behavior of
Asnapp users, we would expect similar results. However, this would be a strong assumption, so
it is possible that if Asnapp were to gain more users, we would see certain models either
perform better or worse than seen in offline testing. We would then need to further adjust our
chosen models accordingly.

Another potential future improvement to Asnapp would be to add more recommender options
for users. For example, we could add a content based recommender that recommends
workouts that are similar to the userʼs most recent workout (or perhaps the average of their
liked workouts). With this model, the score would be a similarity measure between the
workouts based on duration, calorie burn, difficulty level, etc. If we also gathered the workout
descriptions, we could perform text mining and take into account the similarity of the workout
descriptions as well. A content based recommender would be useful because it would give
personalized recommendations that are purely based on the userʼs history and not other users
(unlike our collaborative filtering model). This would be appealing to users who want to
understand exactly where their recommendations are coming from.

All in all, with several recommendation options and the inclusion of filtering for user
preferences and needs, as well as a user friendly and intuitive interface, Asnapp is poised to
give value to anyone looking to find workout video recommendations. We hope that Asnapp is
able to provide people with an easy and engaging way to build their at-home workout routines.

Appendix
Appendix A: Fitness Blender Webpage

Screenshot 1: Workout Details on a Fitness Blender Workout Webpage

(red box is the data collected by scraper)

Screenshot 2: Comments on a Fitness Blender Workout Webpage

(red box is the data collected by scraper)

Appendix B: Data Tables From Fitness Blender

Table 1: Fitness Blender Workouts Data (fbworkouts_clean.csv)

Column Name(s) Description

workout_id Unique identifier assigned to each workout video

duration Duration of workout video in minutes

min_calorie_burn Minimum of estimated range of calories burned

max_calorie_burn Maximum of estimated range of calories burned

difficulty Integer between 1-5 (5 being most difficult)

equipment Equipment required for the workout (strings are pythonic, i.e
jump_rope)

training_type Type(s) of training as classified by Fitness Blender (strings are
pythonic)

body_focus Part(s) of body that workout focuses on, as classified by Fitness
Blender (strings are pythonic)

core, lower_body,
total_body, upper_body

One hot encoding of body_focus

balance_agility, barre,
cardiovascular, hiit,
low_impact, pilates,
plyometric,
strength_training,
stretching_flexibility,
toning,
warm_up_cool_down,
aerobics_step

One hot encoding of training_type

barbell, bench, dumbbell,
exercise_band,
jump_rope, kettlebell,
mat, medicine_ball,
physioball, sandbag,
stationary_bike,
no_equipment

One hot encoding of equipment

Table 2: Fitness Blender Workouts Metadata (fbworkouts_meta.csv)

Table 3: Youtube Workout Video Data (workouts_yt.csv)

see Youtube Data API documentation

Table 4: Fitness Blender Interactions (user_item_interactions.csv)

Column Name Description

workout_id Unique identifier assigned to each workout video

workout_title Workout title on the corresponding Youtube video

fb_link Link to the Fitness Blender webpage of the workout

youtube_link Link to the Youtube video for the workout

equipment Equipment required for the workout (strings are human readable,
i.e Jump Rope not jump_rope)

training_type Type(s) of training as classified by Fitness Blender (strings are
human readable)

body_focus Part(s) of body that workout focuses on, as classified by Fitness
Blender (strings are human readable)

Column Name Description

workout_id Unique identifier assigned to each workout video

title Workout title on the corresponding Youtube video

published_at Time published on Youtube

view_count Number of views on Youtube

like_count Number of likes on Youtube

dislike_count Number of dislikes on Youtube

comment_count Number of comments on Youtube

Column Name Description

user_id Unique identifier assigned to each user

workout_id Unique identifier assigned to each workout video

https://developers.google.com/youtube/v3/docs/videos#statistics.likeCount

Appendix C: Tables in Our Database11

Table 1: users

11 Our SQL statements for the creation of these tables can be found here

Column Name(s) Description

user_id Unique identifier assigned to each user. Starts at 5000 (so it
does not overlap with user ids from Fitness Blender
comments)

name Name as inputted in registration form

email Email as inputted in registration form

password Hashed password

equipment Userʼs available equipment (strings are pythonic, i.e
jump_rope). Empty string if user has no preferred
equipment.

training_type Userʼs preferred training types (strings are pythonic)

min_duration Userʼs preferred minimum duration of workout

max_duration Userʼs preferred maximum duration of workout

min_calories Userʼs preferred minimum calorie burn of workout

max_calories Userʼs preferred maximum calorie burn of workout

min_difficulty Userʼs preferred minimum difficulty of workout

max_difficulty Userʼs preferred maximum difficulty of workout

balance_agility, barre,
cardiovascular, hiit,
low_impact, pilates, plyometric,
strength_training,
stretching_flexibility, toning,
warm_up_cool_down,
aerobics_step

One hot encoding of training_type

barbell, bench, dumbbell,
exercise_band, jump_rope,
kettlebell, mat, medicine_ball,
physioball, sandbag,
stationary_bike

One hot encoding of equipment, without no_equipment

https://github.com/amandashu/Workout_Recommender/blob/main/workout_db.sql

Table 2: user_item_interaction

Note: The schema matches Table 4 in Appendix B as user_item_interactions.csv file was directly
uploaded into the database, but additional data is inserted into this table as our usersʼ
interactions are recorded.

Table 3: user_disliked_items

Table 4: fbworkouts
The schema matches Table 1 in Appendix B as fbworkouts_clean.csv file was directly uploaded
into the database. There are no further changes to this table.

Table 5: fbworkouts_meta
The schema matches Table 2 in Appendix B as fbworkouts_meta.csv file was directly uploaded
into the database. There are no further changes to this table.

Column Name(s) Description

user_id Unique identifier assigned to each user. Contains ids from both
the inferred users by Fitness blender comments and Asnapp
users.

workout_id Unique identifier assigned to each workout video

Column Name(s) Description

user_id Unique identifier assigned to each user. Starts at 5000 (same
user_id from user table)

workout_id Unique identifier assigned to each workout video

Appendix D: Web Application

Screenshot 1: Welcome/Login Screen

Screenshot 2: User Registration Page

Screenshot 3: Choosing a Recommender

Screenshot 4: Recommendation Page

Screenshot 5: Workout Popup

Screenshot 6: Options to Change Display of Workouts

Screenshot 7: Updating User Info

Screenshot 7: Liked/Disliked Workout History

