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Project Description 
For those who work out at home, finding a good workout routine is difficult. It is hard to 
constantly have to find workout videos that meet your fitness needs, as well as your time and 
equipment constraints. Plus, the pre-set workouts found online are not one-size-fits-all. In 
other words, while there are many workout videos online to choose from, these choices are 
non-personalized. Our project, Asnapp, is a solution that can solve all these problems, as well 
as meet the growing need for an easy way to build a good at-home workout routine during the 
pandemic.  

Asnapp is a web application that provides personalized recommendations of workout videos by 
Fitness Blender1. Our website displays several lists of recommendations (similar to Netflixʼs 
user interface), such as “top upper body workouts for you”. Users can login into our website, 
choose between several models to generate their recommendations, browse through 
personalized recommendations lists, and choose a workout to do, saving them the time and 
effort needed to build a good workout routine. 

Report Overview 
From Fitness Blenderʼs website, we scrape workout related data from all of their free workouts, 
as well as the Fitness Blender usersʼ comments on each of their workout webpages. We use the 
comments data to avoid the cold start problem, as it serves as a proxy for user-item interactions 
needed to train the models with. Thus, we would be able to train models even before building 
our web application and deploying to users. We further describe the data collection and 
preprocessing steps in the Data section. 

We then perform offline testing and evaluate three recommendation models (random, top 
popular, and a pure collaborative filtering model by LightFM2). The models are trained with 
the user-item interaction information from the comments data and evaluated on the NDCG 
metric (normalized discounted cumulative gain). We describe our model implementations and 
their performance results in the Models section. 

Finally, we built a web application, where users can login and view their workout video 
recommendations. The application is connected to a database that collects our usersʼ 
preferences and workout history information. The database has our previously scraped 
workout video and comments data uploaded to it as well. The three models we previously 
evaluated are deployed, and users are able to choose which model to get recommendations 
from. Since we do not expect to have enough user-item interactions data from our own users, 
we train the models on both the scraped comments data and the interactions data from Asnapp 

1 Fitness Blender is a company that provides free workout videos. 
2 LightFM is a Python package containing implementations of recommendation algorithms.  
 

 

https://www.fitnessblender.com/
https://making.lyst.com/lightfm/docs/home.html


 

users in order to generate our predictions. The recommended workout videos displayed will be 
only those that match the workout preferences that the user initially inputted, providing 
further personalization. We describe the details and implementation of our web application in 
the Web Application section.  

In the Conclusion section, we summarize Asnappʼs value as well as discuss drawbacks and 
potential improvements. 

Data3 
Data Source: We choose Fitness Blender as our data source, as they have 580 free workout 
videos on their website and a large user base (6 million subscribers on Youtube). This means 
there will be a sufficient amount of workout videos to recommend and enough user-item 
interactions data to train our models with. Fitness Blenderʼs website contains a separate 
webpage for each of their workouts, with details on that specific workout, such as the duration, 
calorie burn, difficulty, required equipment, training type, and body focus. These webpages 
also contain an embedded youtube video and comments from their users (see Appendix A for 
screenshots of a workoutʼs webpage on Fitness Blender).  

Workout Details: We implement a scraping script that collects details for every free workout 
on Fitness Blender. We then clean and preprocess the data, including getting rid of special 
characters in strings, applying type conversions for strings meant to be numerical values, and 
performing one hot encoding of the equipment, body_focus, and training_type columns. The 
workout video attribute details are then written to the data files fbworkouts_clean.csv and 
fbworkouts_meta.csv (see Table 1 and 2 in Appendix B for all column names and descriptions).  

Youtube Data: Furthermore, with the youtube video ids (interpreted from the youtube links we 
scraped), we then query the Youtube API to gather the workout titles, date posted, and number 
of likes, shares, and comments for each workoutʼs Youtube video. The data is written to 
workouts_yt.csv.  

Comments Data: We also scrape the comments section on each Fitness Blender workout 
webpage. For each comment, we gather the username and profile picture (if the user has a 
profile picture, this value is a link, otherwise it is a single letter) of the person commenting as 
well as the time the comment was posted. During the scraping process, the username and 
profile picture is combined to create a hashed_id. During preprocessing, we create our own 
user_id (integer value) based on the hashed_id. We also drop duplicates such that Fitness 
Blender users who commented on the same workout multiple times will not have that 
user-item pairing show up more than once in the dataset. We also omit any user who has less 
than 54 interactions (commented on less than 5 videos). The final data file that is outputted, 
user_item_interactions.csv, contains user-item pairings with columns user_id and workout_id.  

3 See our basic exploratory data analysis of the data here 
4 There is a parameter d in our preprocessing function to choose the minimum number of interactions 
needed to keep the user in the dataset. When d=5, there are 52073 total interactions from 4026 users with 
580 workout videos. 

 

https://github.com/amandashu/Workout_Recommender/blob/main/notebook/EDA.ipynb


 

Model Input: For performing offline testing on the user-item interactions data inferred by 
Fitness Blenderʼs commenters, we first perform a random 70%-30% split on the data to get 
training and testing datasets. We use LightFMʼs Dataset class to generate the LightFM modelʼs 
inputs, which are user-item interaction matrices. 

Models 
We implement three models as described below: 

Random: This recommends workouts randomly. For each workout, we randomly assign a 
score between 0 and 1. 
Top Popular5: This recommends the most popular workouts based on the number of 
comments on a workoutʼs Fitness Blender webpage. The score assigned to each prediction is 
the number of comments. 
LightFM: This is LightFMʼs pure model, which is a traditional collaborative filtering6 matrix 
factorization method.  

 
We evaluate these models on the NDCG metric (normalized discounted cumulative gain) using 
scikit-learnʼs implementation. NDCG is frequently used to measure the relevance and ordering 
of ranking tasks. It is an appropriate metric to use because our objective is to recommend the 
most relevant workouts to a user and thus the ordering of our predictions matter. 

We train the models on the training user-item interaction data (users with less than 5 
interactions are dropped) and evaluate NDCG (with only the top 20 scores7 considered) on the 
testing data8. We note that for evaluating these models, we use LightFMʼs method of creating 
the testing user-item interactions matrix as the true label input of the evaluation function 
(y_true in scikit-learnʼs ndcg_score). Since LightFM uses their internal indices to identify a 
workout (these differ from the workout ids outputted by our top popular recommender), for 
evaluating top popular, we also add a mapping function that maps the workouts ids predicted 
by the model to LightFMʼs internal indices. The results are displayed in Table 1 below. 

Table 1: Model Results  

 

5 We also implement an extension of top popular that includes the data from the Youtube API, but find 
that it performs worse (see our notebook here) 
6 A collaborative filtering system recommends to a user items that similar users have interacted with but 
the user has not previously interacted with 
7 k=20, where k is a parameter to scikit-learn's ndcg implementation  
8 We also compare scores across various choices of d and k here. 

 

Model NDCG@20 

Random 0.017 

TopPop 0.099 

LightFM 0.098 

https://github.com/amandashu/Workout_Recommender/blob/main/notebook/KNN_collab.ipynb
https://github.com/amandashu/Workout_Recommender/blob/main/notebook/param_comparision.ipynb


 

Although the top popular model and LightFMʼs pure collaborative filtering model both perform 
better than the random recommender (which is as expected), the top popular model and 
LightFMʼs model perform approximately the same. This is surprising as we expect 
collaborative filtering to perform better than a top popular recommender, since the top 
popular recommender is non-personalized. We believe this is a result of a vastly sparse dataset. 
We also note that we attempted to use the vanilla collaborative filtering algorithm and KNN9, 
which scored roughly the same as random guessing and is consequently not included. This 
outcome informed us about the possible sparsity of interactions in the data, and the above 
results further reaffirm it.  

Despite these results, we still choose to deploy all three of these models. Although the random 
recommender has poor performance with NDCG, we believe that it provides users with the 
option to diversify their workout routine. Also, even though the top popular recommender is 
non personalized, we believe that people are naturally drawn to trying what is popular. We 
note that Netflixʼs recommendation system also has a top popular recommendation, so is it not 
unreasonable to assume that the top popular model will perform well with our users online. 
With LightFMʼs collaborative filtering algorithm, we believe it is possible that with the addition 
of user-item interaction data coming from our own users, the model will perform better.  

Web Application 
We built a web application which allows users to create an account, login, choose a 
recommendation model, view their recommendations, and like/dislike workouts theyʼve 
completed. The back-end is developed using Flask and the front-end with HTML, CSS, and 
Bootstrap. The application is connected to a MySQL database using Amazon RDS and is 
deployed with Heroku. The Fitness Blender workouts and comments data collected, as 
described in the Data section, are all uploaded to the database (see Tables 2, 4-5 in Appendix C). 

Login/Registration: When users come to our website, they can either login as an existing user 
or register themselves as a new user (see Screenshot 1 in Appendix D). During registration, the 
user is asked for their name, email, password, available equipment, as well as their preferred 
training types, minimum and maximum calories burned, and duration of workouts (see 
Screenshot 2 in Appendix D). The registration form has validators to ensure that no fields are 
not filled out, the password and confirm password fields match, and the ranges for calories and 
duration are reasonable. After registering, the userʼs information is inserted into the users 
table in the database, with their password hashed to ensure privacy (see Table 1 in Appendix C 
for user table column information). On the login page, users fill out email and passwords, and 
the form validates whether the email exists in the database and that the password matches. 
Aftering logging in, the userʼs id is recorded as session data, so that users are still logged in 
even when revisiting the website (assuming they do not log out). 

Model Deployment: Once logged in, users are redirected to the recommendation page, where 
they are able to choose which model to generate their recommendations with (see Screenshot 3 
in Appendix D). The three models we previously evaluated are deployed (displayed to the user 
as “Random”, “Most Popular”, and “Recommended for you”), using SQL statements for the 

9 Our implementation of the KNN collaborative filtering approach can be found here 
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random and top popular recommenders and our previously implemented python function for 
the LightFM model. Similarly to before, since the predictions of LightFM use their internal 
indices to identify workouts and users, we also add mapping functions that maps LightFMʼs 
internal item and user indices to the workout and user ids in our data in order to display the 
corresponding workouts for the appropriate user. Both the top popular and LightFM models 
are given the combined user-item interactions data inferred from scraped comments on 
FitnessBlender and interactions recorded from our users on our website as the input to the 
models.  

Recommendations: After choosing a recommender, users click a button to view their 
recommendations (see Screenshot 4 in Appendix D). The recommenderʼs predicted workouts 
are filtered to keep only ones that match the userʼs preferences specified during the 
registration process. Specifically, the only workouts kept are the ones that have either no 
equipment listed or lists equipment that the user has. Similarly, only workouts that match the 
userʼs preferred training types and are within their preferred difficulty range and workout 
duration are kept. For calorie burn, if there is some overlap between the userʼs preferred range 
and the workoutʼs estimated range, then the workout is kept. The filtered recommendations 
are displayed in four lists for the categories upper body, lower body, core, and total body. Each 
list shows the top nine ranked workout videos in the respective category (36 recommendations 
total). Users can click onto a specific workout, which displays a popup to start the workoutʼs 
Youtube video. Inside the popup, users can skip to the next video in the lists and have the 
option to like or dislike the workout (see Screenshot 5 in Appendix D). We also allow users to 
change the display of workouts, such as only including certain body focuses and choosing how 
many workouts to show on the screen (see Screenshot 6 in Appendix D). 

Collecting user interactions: If the user clicks on the like button in the popup, this 
information is recorded into the user_item_interaction table (Table 2 in Appendix C). We note 
that we only consider clicking the like button as an interaction to be added into the table. Thus, 
users need to click like on at least one workout in order for our LightFM model to be 
executed10. If a user has no previous interactions and choses the “Recommended for you” 
option, we default to using a random recommender. If the user clicks on the dislike button, this 
is added into a table in our database as well (Table 3 in Appendix C). We also filter out workout 
recommendations that a user has disliked.  

Updating Preferences and Interaction History: Users can also update their preferences with 
the “Update Preferences” feature (see Screenshot 7 in Appendix D). This takes users to a form 
similar to the original registration page, but it is prefilled to include their current workout 
preferences. When submitted, the userʼs information in the database is updated. Furthermore, 
the “Workout History” feature (see Screenshot 8 in Appendix D) takes users into a page that is 
similar to the recommendation page but has the option for users to view their previously liked 
and disliked workouts. This is particularly useful for users who may want to redo a workout 
they previously liked or un-dislike a workout they have previously disliked.  

10 The LightFM model is trained on the user_item_interaction table, so the user must first exist in that 
table in order to get the userʼs predictions. 

 



 

Next Steps/Conclusion 
We acknowledge there is uncertainty as to whether the NDCG performance of the models 
during offline testing (with only data from the Fitness Blender comments), will be similar to 
the performance of our deployed recommendation system (which uses the addition of Asnapp 
usersʼ data). If the user behavior of the Fitness blender comments matches the behavior of 
Asnapp users, we would expect similar results. However, this would be a strong assumption, so 
it is possible that if Asnapp were to gain more users, we would see certain models either 
perform better or worse than seen in offline testing. We would then need to further adjust our 
chosen models accordingly.  

Another potential future improvement to Asnapp would be to add more recommender options 
for users. For example, we could add a content based recommender that recommends 
workouts that are similar to the userʼs most recent workout (or perhaps the average of their 
liked workouts). With this model, the score would be a similarity measure between the 
workouts based on duration, calorie burn, difficulty level, etc. If we also gathered the workout 
descriptions, we could perform text mining and take into account the similarity of the workout 
descriptions as well. A content based recommender would be useful because it would give 
personalized recommendations that are purely based on the userʼs history and not other users 
(unlike our collaborative filtering model). This would be appealing to users who want to 
understand exactly where their recommendations are coming from. 
 
All in all, with several recommendation options and the inclusion of filtering for user 
preferences and needs, as well as a user friendly and intuitive interface, Asnapp is poised to 
give value to anyone looking to find workout video recommendations. We hope that Asnapp is 
able to provide people with an easy and engaging way to build their at-home workout routines. 
 

  

 



 

Appendix 
Appendix A: Fitness Blender Webpage 

 

 
Screenshot 1: Workout Details on a Fitness Blender Workout Webpage  

(red box is the data collected by scraper) 
 
 
 
 

 
Screenshot 2: Comments on a Fitness Blender Workout Webpage  

(red box is the data collected by scraper)  

 



 

Appendix B: Data Tables From Fitness Blender 

Table 1: Fitness Blender Workouts Data (fbworkouts_clean.csv) 

 
  

 

Column Name(s) Description 

workout_id Unique identifier assigned to each workout video 

duration Duration of workout video in minutes 

min_calorie_burn Minimum of estimated range of calories burned 

max_calorie_burn Maximum of estimated range of calories burned 

difficulty Integer between 1-5 (5 being most difficult) 

equipment Equipment required for the workout (strings are pythonic, i.e 
jump_rope) 

training_type Type(s) of training as classified by Fitness Blender (strings are 
pythonic) 

body_focus Part(s) of body that workout focuses on, as classified by Fitness 
Blender (strings are pythonic) 

core, lower_body, 
total_body, upper_body 

One hot encoding of body_focus 

balance_agility, barre, 
cardiovascular, hiit, 
low_impact, pilates, 
plyometric, 
strength_training, 
stretching_flexibility, 
toning, 
warm_up_cool_down, 
aerobics_step 

One hot encoding of training_type 

barbell,  bench, dumbbell, 
exercise_band, 
jump_rope, kettlebell, 
mat, medicine_ball, 
physioball, sandbag, 
stationary_bike, 
no_equipment 

One hot encoding of equipment 



 

Table 2: Fitness Blender Workouts Metadata (fbworkouts_meta.csv ) 

 
 
Table 3: Youtube Workout Video Data (workouts_yt.csv ) 

see Youtube Data API documentation  
 
 
Table 4: Fitness Blender Interactions (user_item_interactions.csv ) 

 

Column Name Description 

workout_id Unique identifier assigned to each workout video 

workout_title Workout title on the corresponding Youtube video 

fb_link Link to the Fitness Blender webpage of the workout 

youtube_link Link to the Youtube video for the workout 

equipment Equipment required for the workout (strings are human readable, 
i.e Jump Rope not jump_rope) 

training_type Type(s) of training as classified by Fitness Blender (strings are 
human readable) 

body_focus Part(s) of body that workout focuses on, as classified by Fitness 
Blender (strings are human readable) 

Column Name Description 

workout_id Unique identifier assigned to each workout video 

title Workout title on the corresponding Youtube video 

published_at Time published on Youtube 

view_count Number of views on Youtube 

like_count Number of likes on Youtube 

dislike_count Number of dislikes on Youtube 

comment_count Number of comments on Youtube 

Column Name Description 

user_id Unique identifier assigned to each user 

workout_id Unique identifier assigned to each workout video 

https://developers.google.com/youtube/v3/docs/videos#statistics.likeCount


 

Appendix C: Tables in Our Database11 

Table 1: users  

11 Our SQL statements for the creation of these tables can be found here 

 

Column Name(s) Description 

user_id Unique identifier assigned to each user. Starts at 5000 (so it 
does not overlap with user ids from Fitness Blender 
comments) 

name Name as inputted in registration form 

email Email as inputted in registration form 

password Hashed password 

equipment Userʼs available equipment  (strings are pythonic, i.e 
jump_rope). Empty string if user has no preferred 
equipment. 

training_type Userʼs preferred training types (strings are pythonic) 

min_duration Userʼs preferred minimum duration of workout 

max_duration Userʼs preferred maximum duration of workout 

min_calories Userʼs preferred minimum calorie burn of workout 

max_calories Userʼs preferred maximum calorie burn of workout 

min_difficulty Userʼs preferred minimum difficulty of workout 

max_difficulty Userʼs preferred maximum difficulty of workout 

balance_agility, barre, 
cardiovascular, hiit, 
low_impact, pilates, plyometric, 
strength_training, 
stretching_flexibility, toning, 
warm_up_cool_down, 
aerobics_step 

One hot encoding of training_type 

barbell,  bench, dumbbell, 
exercise_band, jump_rope, 
kettlebell, mat, medicine_ball, 
physioball, sandbag, 
stationary_bike 

One hot encoding of equipment, without no_equipment 

https://github.com/amandashu/Workout_Recommender/blob/main/workout_db.sql


 

Table 2: user_item_interaction 

Note: The schema matches Table 4 in Appendix B as user_item_interactions.csv file was directly 
uploaded into the database, but additional data is inserted into this table as our usersʼ 
interactions are recorded. 
 

Table 3: user_disliked_items 

 

Table 4: fbworkouts  
The schema matches Table 1 in Appendix B as fbworkouts_clean.csv file was directly uploaded 
into the database. There are no further changes to this table. 
 
Table 5: fbworkouts_meta 
The schema matches Table 2 in Appendix B as fbworkouts_meta.csv file was directly uploaded 
into the database. There are no further changes to this table.  

 

Column Name(s) Description 

user_id Unique identifier assigned to each user. Contains ids from both 
the inferred users by Fitness blender comments and Asnapp 
users. 

workout_id Unique identifier assigned to each workout video 

Column Name(s) Description 

user_id Unique identifier assigned to each user. Starts at 5000 (same 
user_id from user table) 

workout_id Unique identifier assigned to each workout video 



 

Appendix D: Web Application 

 

 
Screenshot 1: Welcome/Login Screen 

 
 

 



 

 
Screenshot 2: User Registration Page 

 



 

 

 
Screenshot 3: Choosing a Recommender 

 
 

 

 
Screenshot 4: Recommendation Page 

 



 

 

 
Screenshot 5:  Workout Popup 

 
 
 
 
 
 

 
Screenshot 6:  Options to Change Display of Workouts 

 



 

 
Screenshot 7:  Updating User Info 

 



 

 
Screenshot 7:  Liked/Disliked Workout History 

 
 
 
 

 


