
Plates4U: A Collaborative-Filtering approach to Recipe
Recommenders

Anthony Fong
UC San Diego

San Diego, California
ajf010@ucsd.edu

Alex Pham
UC San Diego

San Diego, California
alp075@ucsd.edu

Zachary Nguyen
UC San Diego

La Jolla, California
zanguyen@ucsd.edu

Abstract

Existing options for recipe recommendations are less than
satisfactory. We sought to solve this problem by creating
our own recommendation system hosted on a website.
Using recipe data from Food.com, we created a classifier
to identify cuisines of recipes, a popularity based
recommender, and a content-based filtering recommender
using cosine similarity. In the future, we would like to
improve upon this recommender by exploring alternative
ways to model ingredients, by tracking implicit/explicit
data of a user, and by creating a hybrid recommender
using collaborative techniques.

1 Introduction

A recommender system is an important application of
data science that serves to generate item
recommendations that would be interesting and relevant
to a user. Recommender systems are integral to the
successes of the music, news, and even social networking
industries, but its applications in the recipe/culinary
industry still have room for improvement.

With our hectic and unpredictable daily schedules, it
can be easy to rely on convenient and unhealthy foods
that detriment our health. And oftentimes, indecisiveness
in meal preparation can lead to monotonous and
unenjoyable meals. Typically, in searching for a recipe,
one either finds very tedious recipe blogs that take too
much time to actually view the recipe details, or they find
overly complicated recipe websites that can require a
membership or profile in order to access recipes. Finding
great recipes that accommodate your preferences should
not be this difficult, and so the goal of this project was to
develop a recipe recommender system that suggests
interesting recipes based on filters that the user could
input such as ingredients, cook time, and cuisine type.

The final output of our project is a simple website where
users can easily select filters to generate recipes.

2 Target Goal
The target of our recommender system using the recipe
datasets we have gathered, is to be able to give recipe
recommendations given limited information about the
user. The goal is to make the recommender as user
friendly as possible removing the need to create any
accounts or feel any sort of long-term commitment to the
model.

The recommender should recommend recipes to users
given ingredients the user has lying around or plans to get
sometime soon. This model prevents food waste by
giving suggestions as to what users could do with leftover
ingredients. It also diversifies the user’s palate by giving
recipe suggestions that may not have been known to the
user beforehand.

If we are able to provide recipe recommendations that
both allow users to utilize the ingredients they have lying
around, and try new recipes that they may not have had
before then our recommender system would have done its
job.

3 Dataset
The main dataset we are using for our project was
acquired from a Kaggle user named Shuyang Li [1], but
the dataset was scraped from Food.com. The dataset
contains 8 files. Three of the files from the dataset were
pre-processed files that the Kaggle user created for their
specific project. Another three files contained the train,
test, and validation sets the Kaggle user used in training
and testing their models. We did not use any of these 6
files in our project. Instead, we used the remaining two
files. The first file contained the raw recipes scraped from
Food.com. This file was the scraped recipe data which

mailto:ajf010@ucsd.edu
mailto:alp075@ucsd.edu
mailto:zanguyen@ucsd.edu


held a variety of information about each recipe from
Food.com. There is information on the amount of time
each recipe takes, what the nutritional information about
the recipe is, what users have tagged the recipe with, etc.
The second file contained interaction data. This file had
information about what user tried what recipe and what
they rated it. There is also information as to when the
review was submitted.

We also utilized a second dataset from Kaggle
uploaded by Kaggle [2]. This second dataset was used to
fill in some of the shortcomings of the first dataset. The
first dataset had a variety of information about each
recipe, but lacked a column specifying what type of
cuisine it fell under. This second dataset from Kaggle had
data on different recipes, what ingredients are used, and
what cuisine type they fell under. Using the ingredients
data from the second dataset, we were able to train a
Random Forest Classifier up to ~75% accuracy to predict
cuisine type of each recipe in the first dataset.

This is not a perfect solution and carries with it
its own set of limitations. Since not every recipe in the
first dataset appeared in the second dataset, we could not
directly map cuisine types from the second dataset to the
first. What this means is that we could be mislabeling
many of the recipes in the first dataset without any way
of verifying. There are also cases where two recipes seem
very similar and are likely the same, but have different
names. The different names could be a factor of which
culture or person named the recipe, and as such is
difficult to identify. This also prevented us from directly
mapping recipe cuisine types from the second dataset to
the first. Though even with the two issues we faced the
model still performed relatively well on the test data
provided, and so the model should be generalizable.
Some example recipes and their cuisine classifications
are shown below:

Image 1: Sample dataset

As you can see the recipes are classified as expected,
with both “italian sandwich pasta salad” and “italian
fries” being classified as italian cuisines.

Since both datasets were found on Kaggle, the data was
already close to being completely clean and did not
require any pre-processing. The only thing we did to
clean the data was we removed some recipes from the
dataset that had ridiculously long cooking times of
several months or years. We assumed that these recipes
were posted by trolls, and were not actually real recipes.
This is an assumption we made as a group, however, as it
is possible that these are real recipes that we are just not
familiar with. Though even if we did not have to clean
the data much, we still conducted some simple
exploratory data analysis to gain a better understanding
of the datasets.

Figure 1: The format of the recipe dataset

Figure 1 depicts a quick snapshot of what the recipe
dataset looks like. There are 12 different columns with
236,637 rows. Each column title very accurately
describes what is stored in that column.



Figure 2: The format of the user interaction dataset

Figure 2 depicts a quick snapshot of what the user
interaction dataset looks like. There are 5 different
columns with over 1 million rows. Each column title for
this dataset also accurately describes what is stored in
that column.

Figure 3: A table displaying the different descriptive statistics from the
recipe dataset

Figure 4: A bar chart with the distribution of ratings

Figure 5: A histogram depicting the number of reviews left by most users

From figures 4 and 5 it is clear that the data is
somewhat skewed. The distribution of ratings appears to
be left skewed while the number of reviews by users
appears to be right skewed. The data does not appear to
be normally distributed and most users appear only a few
times. With so little individual data it is likely going to be
very difficult to build a strong recommender model based
on these user interactions. Furthermore the skewed
ratings could cause a bias in the recommender model
where most recommendations are predicted to have high
ratings.

4 Method
For this project the goal is to provide viable recipe
recommendations to users of our models. To do this we
have set a two stage model setup. We have a most
popular model running as the secondary model and
cosine similarity running as the main model. The cosine
similarity model provides the bulk of the
recommendations, but when there are edge cases or when
the user does not input enough information to return good
recommendations the most popular model substitutes to
generate the remaining recommendations.

5 Model
Two models were developed to offer recipe
recommendations to users. The first model is a simple top
popular recommender that predicts the most popular
recipe to all users, and the second model which acts as



the main model utilizes Cosine Similarity to conduct a
form of Collaborative Filtering.

5.1 Most Popular (MP)

This trivial baseline model is a most popular prediction
model. This model worked by calculating the average
rating of every recipe type normalized by the number of
users that have tried the recipe. This would give every
recipe a rank of sorts. Once this rank is decided the
model would predict whether a user would like a recipe
based on how it ranked overall. The model only
recommends high ranking recipes to users, and as such it
is not personalized. Though surprisingly the model still
performs relatively well. Using ratings of 4 stars and
higher as the user liked it, and 3 stars and lower as the
user does not, the most popular recommender still scored
a relatively low balanced error rate of 0.34. This makes
sense, however, as the recipes are the most popular for a
reason so it should not be surprising that many users
would like them.

This model was chosen as it is simple to implement,
and pretty accurate given its simplicity. The model is also
scalable and has no parameters to tune making it an ideal
choice for a baseline model or a model used in an
AdaBoost algorithm. An AdaBoost algorithm is an
algorithm that compiles multiple quick and easy to
implement machine learning models with subpar results
into a combined model with much better results.

5.2 Cosine Similarity

To deliver a set of recommendations, we use
content-based filtering as our method of candidate
generation. A content-based filtering method compares
items to other items based on their features to calculate a
similarity score. Using this similarity score in addition to
explicit information a user has given, we can return a set
of recommendations. For our implementation, we used
cosine similarity as our measure.

cosine similarity(A,B) = 𝑖

𝑛

∑𝐴
𝑖
×𝐵

𝑖

𝑖

𝑛

∑𝐴
𝑖
2 ×

𝑖

𝑛

∑𝐵
𝑖
2  

(2)
Where:

: number of ingredients𝑛
   : the ith value of ingredient vector A𝐴

𝑖

   : the ith value of ingredient vector B𝐵
𝑖

Our cosine similarity formula relies on the input of two
ingredient vectors A and B. An ingredient vector is an
embedding of a list of ingredients for a given recipe. A
user interacts with our recommender by inputting a list of
ingredients that are available in their kitchen. This a text
input that is comma separated. We then take this input
and transform it into a list of strings. This list of strings is
then transformed using a MultiLabelBinarizer that has
been trained on an entire dataset of recipes that each have
a list of ingredients. The transformed input is now a
vector of n dimensions, n being the total number of
unique ingredients in the dataset. The value of each
element is binary. This transformation is very similar to a
bag of words model, as we only care about the presence
of an ingredient in a recipe.

This process occurs for both the input ingredients and
every recipe in the dataset. This places every recipe as a
vector in an n dimensional space. Cosine similarity is
then used to help us determine a distance between
vectors. The vector nearest to the user’s input vector is
considered the most similar to it.

Once the cosine similarity has been calculated for
every recipe, filtering is done to exclude recipes based on
the user’s input. For example, a user may decide they
want only italian dishes, so any recipes that are not italian
are removed. This filtering is done for cuisine and cook
time.

Finally, the remaining recipes are then sorted in
descending order based on similarity and we output the
top five recommendations.

5.3 Model Comparison

The most popular model is the easiest model to create,
and it offered viable results because of how skewed the
data is to begin with. It is important to keep in mind that
the outputs for predictions are in the range of 0 to 5.
Though over half of the dataset had ratings of 4 or higher.
As such a flat recommender would also likely perform
very well. The most complicated model is the cosine
similarity model. This model performed relatively well



for its purpose of finding similar recipes. Though this
model could not be run on the full data, and as such may
not be suitable as it is not scalable. The model also needs
to run over the entire dataset each time to get all cosine
similarities making it horribly inefficient.

6 Conclusion
Recommender systems exist in a variety of places. For
the space of cooking, the current options available to get
a recommendation for what to make are lackluster. They
suffer from being clunky and not straight to the point.
This makes getting results more difficult for the user. To
resolve this issue, we sought to create our own
recommendation system and deploy it on a website so
that it can be used by anyone.

This was accomplished by taking in a recipe dataset
from Kaggle, classifying the cuisines of each recipe, and
creating two recommender systems. The first
recommender gives the user a list of the most popular
recipes. The second is dependent upon the user inputting
a list of ingredients they have available and delivers
recommendations based on cosine similarity between the
input and existing recipes in the dataset. We then
deployed this recommender as a website that any person
can visit and use.

In the future, we would like to revise and improve this
recommender system, both from the perspective of the

model and from the perspective of the website. We chose
cosine similarity for flexibility, as it could also handle a
change in how to vectorize ingredients. We might want to
try going for something similar to TF-IDF for a user’s
history of ingredients. Additionally, we may want to go
for a hybrid approach by implementing an account
system for users to start building a set of explicit and
implicit data for us to use to start mixing in collaborative
methods.

References

[1] Li, Shuyang, et al. “Food.com Recipes and Interactions.” Kaggle, Empirical Methods in Natural Language
Processing 2019, 8 Nov. 2019,
www.kaggle.com/shuyangli94/food-com-recipes-and-user-interactions?select=interactions_test.csv.

[2] “Recipe Ingredients Dataset.” Kaggle, Yummly, 19 Jan. 2017,
www.kaggle.com/kaggle/recipe-ingredients-dataset/home?select=train.json.

http://www.kaggle.com/kaggle/recipe-ingredients-dataset/home?select=train.json

