Predicting Battery Remaining Minutes based Related Features

Yijun Liu
University of California, San Diego
San Diego, California
Email: yil724 @ucsd.edu

1. Abstract

Our goal for this project is to understand and discover
features that affect the battery’s estimated remaining time.
Through our exploratory data analysis, we have discovered
eight features, namely the number of devices, number of
processes, average memory, average page faults, designed
capacity, cpu percentage, cpu seconds, and cpu tempera-
ture. Using these eight features, we decided to come up
with several different models, Linear Regression, Decision
Tree Regressor, SVM, Random Forest Regressor, Adaboost
Regressor, Gradient Boosting Regressor and Bagging Re-
gressor. To understand which model performs the best given
these features, we performed hypothesis testing. In the end,
our results show that Gradient Boosting Regressor performs
the best out of all in that the maes generated on the train
and test set are quite low and very similar. This indicates
that Gradient Boosting Regressor has less of an overfitting
issue than the other two models. Another indication is that
through our hypothesis testing, our P-values indicate that
Gradient Boosting Regressor performs the best among all
others.

2. Introduction

Ever since the advent of personal computers and mobile
devices, the attention has shifted to battery technology.
Reasons for such are many, but one main factor is attributed
to people’s rise of expectation in the speed and longevity
of these devices. In the early days, the slow and glitchy
devices used to be the norm. In fact, having one was a
luxury in and out of itself. However, as tech companies
competed against each other to release the better product,
these devices began to see a dramatic increase in their
speed and longevity. This in turn led to groups of scientists
and engineers coming together to investigate and delve
deeper into the problem of lagging, and the solution they
believed would exponentially increase people’s device
usage was to invest in battery technology. In an attempt
to maintain the churn rate, groups of professionals flocked
to battery experts to apply the latest technology onto their
devices such that customer satisfaction would remain high.
For such reasons, we would like to investigate the features

Kaixin Huang
University of California, San Diego
San Diego, California
Email: k3huang @ucsd.edu

Jinzong Que
University of California, San Diego
San Diego, California
Email: jque@ucsd.edu

that affect the battery’s estimated remaining time.

Provided by the Intel Teams, we have decided to
specifically focus on battery related datasets. Namely, some
of these datasets would contain the needed GUIDs, or
systems that we are interested in; the specified devices,
which in our case, would be DC battery; cpu information,
which provide insight to issues of overheating and cpu
capabilities; process information, which allows us to
understand the memory usage and page faults of these
running processes. In the following sections, we will delve
deeper into many of these features and eventually build a
model based on the features we deem appropriate for our
analysis.

3. Methods
3.1. Data Collection

This part emphasized on the accomplishments we have
done for the last quarter: We practiced the Data Collection
process — Our interested data fields for collecting are those
we believed that would be related to the lifetime of batteries.

To retrieve data, we first replicated what was instructed
on the main documentation [Int] from MSDN:

o Enumerate the battery devices through
SetupDiGetClassDevs functiongetting
the name and details of this battery through
SetupDiGetDeviceInterfaceDetail and
SetupDiEnumDevice Interfaces, and creating a
handle to request information from it;

e To retrieve information, we first need to
request for Battery_Tag through using
IOCTL_BATTERY_QUERY_ TAG control

code, and with this tag, we are able to
retrieve Battery_Designed_Capacity,
Battery_Full_Charged_Capacity,
and Battery_Cycle_Count through
IOCTL_BATTERY_QUERY_INFORMATION

control code.

e To retrieve Battery_Current_Capacity,
Battery_Voltage, Battery_Rate, we used
control code TOCTL_BATTERY_QUERY_STATUS.

For other data we need, we also re-
fer to GetSystemPowerStatus and
CallNtPowerInformation functions. These two
functions retrieve back Battery_Left, Battery_Flag
R Battery_Life_ Time, Battery_Charging,
Battery_Discharging, Battery_MaxCapacity.

We revised our input library based on the sample
provided on static_standard_input. Therefore, our
input library is dependent on a static input library. The
reason for using a static library is that the number and the
type of our inputs data would not change over time.

With the self-designed input library, we run ersv.exe
for about 2 hours with a time interval of 30 seconds to
collect around 3000 records of data.

These practices on collecting data by building on our
own input libraries gave us a better sense on how the drivers
control the sensors on our computers for collecting multiple
information.

3.2. Data Preparation

For the second quarter, unlike what we have done for
the previous one, we were provided with the pre-collected
data by the Teams. Therefore, all of our analysis are based
on those datasets.

Our interested datasets are Battery Events related
dataset (batt_acdc_events.csv000.gz), Battery Information
related Dataset (batt_info.csv000.gz), Device usage
related Dataset (devuse_4known_device.csv000.gz
and devuse_4known_device.csv001.gz), CPU
related Dataset (hw_metric_histo.csv000.gz and
hw_metric_histo.csv001.gz), and Process related Dataset
(plist_process_resource_util_13wks.csv000.gz).

Battery Events dataset would provide us with activities
log for batteries, for example, it contains the information
about whether the battery is running on Direct Current or
Alternating Current; Battery Information dataset gave us
a comprehension about the static information of batteries,
for example, the full charged capacity for each battery;
Device Dataset would enable us to understand what kind
of device our system is currently running on; CPU related
Dataset contains the information about CPU information,
for example, current CPU temperature and CPU utilization.

Steps for collecting interested information are listed
below:

o We started with Device Usage related Dataset with
filtering conditions of i) device name must be
‘GUID_DEVICE_BATTERY’; and ii). The collected
time should be within September of 2020. After
loading Device Usage related Dataset, we obtained
our interested GUIDs.

e In order to filter out only DC battery, we switched
focus on Battery Events related Datasets. To filter
out Battery Events dataset, we added the filtering
conditions that the battery type should be ‘DC’ and
the collected time should also be within September
of 2020. After this, we get a new set of our needed
GUIDs, and we explored other datasets based on
those needed GUIDs.

o We utilized those GUIDs for further filtering on
other datasets (e.g. Battery Information related
Dataset, Process related Dataset and CPU related
Dataset). For CPU related Datasets, one additional
filtering condition we added is that the data must
contain information about CPU utilization per each
CPU core or information about CPU temperature in
centigrade.

After collecting needed data, we manually selected 8
features for predicting Battery minutes remaining. From
Battery Information related dataset, we selected Average
Full Charge Capacity; From Process related dataset, we
selected number of processes per guid, Average Page Faults
per guid, Average Memory per guid, and Average CPU
seconds per guid; From CPU related dataset, we selected
Average CPU utilization per each CPU core and Average
CPU temperature per guid; From Device Usage related
dataset, we selected number of devices per guid.

3.3. EDA

We chose 8 features as our features on building our
regression model for predicting battery remaining minutes.
The reasons for selecting those 8 features are that 1).
From our experiences, we realized that when we have
multiple process or devices are going on, usually the
battery would have a lower remaining time; 2). When
memory related issue occurs, it would always affect the
performance of batteries. Therefore, we considered Page
Faults and Memory as another features to select; 3).
Static information of battery, for example, the full charged
capacity or designed capacity would definitely define the
attribute of battery, making the performance of battery
different; 4). CPU related information would also be a
factor the influence the battery remaining time.

With our comprehension above, we did a correlation
analysis between those selected 8 features and battery re-
maining minutes and the results are:

Target (y) Features (Xi) Correlation
battery minutes number of devices per guid -0.009
remaining

number of processes per guid -0.023
Average Page Faults per guid -9.017
Average Memory per guid 0.004
Average CPU seconds per guid -9.025
Average Full Charge Capacity -0.002
Average CPU utilization per each CPU -0.004
core
Average CPU temperature per guid -0.005

Correlation Analysis indicates that there are weakly-
negative correlation between battery minutes remaining
and number of devices per guid, number of processes per
guid, Average Page Faults per guid, Average CPU seconds
per guid, Average Full Charge Capacity, Average CPU
utilization per each CPU core, Average CPU temperature
per guid. Even though the correlation values are pretty
low, the negativity still confirms with our expectation as
we believed that as the values of those features increase,
battery minutes remaining should decrease. One possible
explanation for the low value of correlation coefficients, as
suggested by the Teams, is that those fields were mixed
with both the DC and AC batteries, and we were unable to
separate them.

3.4. Model

For the Model Part, we started our model building by
using Linear Regression model, which is the most basic ma-
chine learning model to start, and later came up with some
more complex models and finally selected 3 models with
the lowest Mean Absolute Error. The reason for choosing
Mean Absolute Error is that we are selecting a Regression
Model, and we wants to see how varied our predictions
are compared to the true values, no matter which directions
those predictions are varied.

3.4.1. Baseline Model: Linear Regression

We started building our prediction model based on Lin-
ear Regression, the simplest regression model. After training
on the model on the training dataset and test on the test
dataset, we obtained a Mean Squared Error of 0.2656 on
test dataset, which is lower than the mae of 0.2666 on the
training set. We are not sure on the performance of this
model, and want to see whether we could decrease mae
further, so we switch to improved models.

3.4.2. Improved Model:
We tried different models and selected 3 models with the
lowest maes as our improved models: Gradient Boosting

Regressor, Support Vector Machine and AdaBoosting
Regressor. For the other two models we have tried, we
realized that these two models would overfit our data.

Mean Absolute Error
s

Overfitting

Lowest MAE on both
train and test set

Random Decision Tree
Forest Regressor
Regressor

Gradient SVM AdaBoosting
Boosting Regressor

Regressor

For our improved Model, we realized that only Gradient
boosting Regressor, SVM, and Adaboosting Regressor do
not occur the issue of over-fitting, so we are going to pay
more attention on those and did Hypothesis Testing to see
which one is the best improved model.

3.5. Hypothesis Testing

3.5.1. SVM vs Gradient Boosting Regressor:

In our hypothesis testing, we would like to understand
the performance between the SVM and the Gradient
Boosting Regressor on our Dataset.

o There’s no difference in performance between SVM
and Gradient Boosting Regressor.

e Gradient Boosting Regressor performs better than
SVM.

Our test statistic for our hypothesis test is the observed
difference between the MSE on the test set using SVM and
the MSE on the test set using Gradient Boosting Regressor.
With this, we then ran a simulation to generate new X and y
by test, train, and split X and y in every new iteration, for a
total of 1000 iterations. Our simulated differences in MSEs
between the two models are displayed by the plot below:

250

200

150

100

0
0.000 0.005 0.010 0.015 0.020 0.025

Comparing our observed test statistic to our simulated
test statistics, our p-value comes out to be 0.0. As a result,
we reject the null hypothesis given our threshold of 0.05,
but only by very slightly. This tells us that the Gradient
Boosting Regressor does perform slightly better than SVM.

MAE on the test set

MAE on the train set

3.5.2. AdaBoosting Regressor vs Gradient Boosting Re-
gression:

After comparing the performance between SVM and
Gradient Boosting Regressor, we would like to understand
the performance between AdaBoosting Regressor and
Gradient Boosting Regressor on our Dataset. From above,
we could see that the mae generated by the Gradient
Boosting Regressor performed better in the sense that the
mae on the test is lower than the mae on the test from
AdaBoosting Regressor. Since we would like to verify
if Gradient Boosting Regressor’s performance is due to
random chance or not, our null and alternative hypothesis
are as follow:

e Null Hypothesis: There’s no difference in
performance between AdaBoosting Regressor
and Gradient Boosting Regressor

o Alternative Hypothesis: Gradient Boosting
Regressor performs better than AdaBoosting
Regressor.

Our test statistic for our hypothesis test is the observed
difference between the MSE on the test set using Gradient
Boosting Regressor and the MSE on the test set using
AdaBoosting Regressor. With this, we then ran a simulation
to generate new X and y by test, train, and split X and y
in every new iteration, for a total of 1000 iterations. Our
simulated differences in MSEs between the two models are
displayed by the plot below:

1000

600

400

200

-8 5 4 -2 0

Comparing our observed test statistic to our simulated
test statistics, our p-value comes out to be 0.015. As
a result, we fail to reject the null hypothesis given our
threshold of 0.05. This indicates that Gradient Boosting
Regressor performs better than AdaBoosting Regressor.

3.6. Discussion and Limitations

After discussing our project with Teams, we realized
that we have mainly three limitations:

e Features are not sufficient as we still need to con-
sider the factors from users. For example, users
playing games would always have a lower battery

remaining time comparing to users using only basic
operations;

o In evaluating battery remaining time, using average
is not the best way as one situation might be that,
the user initially do not plug in the charger, so the
battery remaining time would be 180 minutes; but
after he or she plugging in the charger, the remaining
time would increase, say, to 240 minutes. Therefore,
we anticipate the remaining minutes should be 240
minutes. But according to our averaging logic, we
would get 210 minutes.

o For the feature of number of devices per guid, we ig-
nored the factes that different devices would require
different power of battery to run. Therefore, this
might cause our correlation analysis be confounded;

« We noticed that the correlation coefficients are pretty
low. One explanation is that our dataset is limited
as fields such as CPU related information are mixed
with both DC and AC data, which we were unable
to separate.

3.7. Conclusion

Our goal is to understand the features that affect the
battery’s estimated remaining time. Through our exploratory
data analysis, we have found eight features, namely the
number of devices, number of processes, average memory,
average page faults, designed capacity, cpu percentage, cpu
seconds, and cpu temperature. With these features in hand,
we then built several models. In the end, we discovered
that out of all, Gradient Boosting Regressor performs the
best.

References

[Int] IntelCo. Enumerating Battery Devices. URL: https:
//docs.microsoft.com/en-us/windows/win32/power/
enumerating-battery-devices. (accessed: 05.31.2018).

