
Spatial-temporal Prediction of COVID-19 Case Counts Through

Epidemiology Model

Wang, Caiwei Wang, Shuyuan

March 8, 2021

1 Introduction

1.1 Problem

The early state and late stage of a pandemic is very different. At early stage, the case number grows
exponentially. Government agencies and institutions want to the ability to forecast the number of cases in
order to allocated medical and other resources. Furthermore, knowing how protocols such as stay at home
order can affect the case number is extremely useful to make predictions. However, in order to predict number
of cases in the future, the growth factor is needed and can be generated from fitting previous data to an
epidemiology model. The exponential factor is based on two factors that can be learned from data: the
infection rate, β and number of days a patient stays infectious D.

1.2 Context

One of the pressing problems in epidemiology is long term prediction of the spreading of an infectious disease.
Of particular interest is how mitigation measures (government policies) can affect the number of infected
in the future. Numerous efforts have been tried around the world. Many cities and states in the U.S. have
ordered stay-at-home policies. It is useful to see how administering these orders can affect the case numbers,
how would the case numbers react if the government revoke the orders.[1] I

2 Data

We use data from JHU’s public COVID-19 GitHub repository [2], and mobility data provided by Descarted
Lab [3].

2.1 Collection

The U.S. confirmed, death and recovered case is updated daily by regional health departments of different
jurisdictions, then collected by JHU, Because all the data is U.S. (unlike comparing data among different
countries), the testing method and data reporting method are relatively uniform and reliable to make
inferences on.
The mobility data is allocated from many sources. For example, Apple Map can estimate the distance a
typical person travel in that region from their back-end data of users moving in that geological areas.

2.2 Description

The pandemic hits different jurisdictions at a different time. Because the data set is collected by jurisdictions,
we are able to calculate growth factor and make predictions at county or state level.
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In order to fit data to the epidemiology model, we need to have time series data of three variables,
estimated from confirmed, death, and recovered case numbers.

Infected, I = Confirmed Cases

Susceptible, S = Population− Confirmed Cases

Removed, R = Recovered + Deaths

The mobility data is representing the distance a typical member of a given population moves in a day.
With this data set, we are able to see how stay-at-home orders by different states and the pandemic itself
have effect on average mobility trends. The data set also provides additional information for our epidemiology
model. [We haven’t touched on this yet]

3 Methods

3.1 Overview

We decided to predict the case number in 3/2/2021 of all the counties in California. We first use gradient
descent method to find infection rate and infection duration.

However, in reality, the case numbers of the entire country/state is not evenly distributed among counties.
Besides computing the individual infection rate for all the counties, each as a separate entity from its neighbors,
we will predict case numbers based on the mobility data provided by Descartes Labs[3] (how fast is people
moving inside each county and across county boundaries), and the case numbers of each county’s neighboring
counties. We will use a dt around 0.001 day instead of 1 day to better predict the dynamics. This process
requires a fixed β and D predetermined for each county.

Furthermore, β and D are also dynamic. So in the future, we will replace the fixed β and D with dynamic,
changing according to the data.

3.2 Inferring Parameters

See Appendix 5.1 for code. We are using gradient descent to solve for β and 1
D , infection rate and 1 over

days staying infected. Given:
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Loss function can be calculated by:
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)
To calculate the above the term, we need to use the chain rule to differentiate with respect to β and ξ

∇β = 2 ·
(
Sn+1−Sn

h −
(
−βSn InN

))
·
(
Sn · InN

)
+ 2 ·

(
In+1−In

h −
(
−ξkIn + βk

In
N Sn

))
·
(
−Sn · InN

)
∇ξ = 2 ·

(
In+1−In

h +
(
Inξk − βk InN Sn

))
· (In) + 2 ·

(
Rn+1−Rn

h − Inξk
)
· (−In)

First initialize θ at β = 0.2 and ξ = 0.1
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Then, at each iteration update β and ξ according to the rules below
βk+1 = βk − hG∂βL(θ|s(1), . . . , s(N)),
ξk+1 = ξk − hG∂ξL(θ|s(1), . . . , s(N)). where the learning rate, hG = 1/N . where N is the population
When β and D both converge (a.k.a is the same as the previous iteration), we stop the iterations and

return the two value, in order to fit into the ODE model.

3.3 Determining Learning Rate

Lipschitz continuous gradient condition is essential to ensuring convergence of many gradient decent based
algorithms[4].The step size should scale inversely with the Lipschitz contant. We can calculate the constant
by taking the eigenvalue of the hessian matrix of θ See 5.1 to see code

The gradients are:
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The Hessian matrix will look like the following:[
∂∇β
∂β

∂∇ξ
∂β

∂∇β
∂ξ

∂∇ξ
∂ξ

]
We can calculate the hessian matrix given Sn, In and population N . n represents the timestamp, in our

case, is the number of the day after the first day in our sequence. T stands for the total number of days in
the sequence of data.
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3.4 Adding Mobility and Location Variable

After checking the accuracy of our model fitting process, we would calculate infection rates β for all the
counties. Then we want to better predict the case numbers with more data: mobility and geographic
information. Using Geographical Information And Mobility Data to Predict County Infection are necessary
for improving the accuracy of our model. In order to find nearby counties, We used data provided by US
Census to find out each counties’ neighbors. In order to achieve a more accurate prediction, the direction of
mobility is necessary. Therefore, we initially set out four closest counties in west-north-east-south direction.
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for two neighboring points: x1, x2.

∆xI(x, t)|(x1,x2,x3) ≈
∂x1I(x, t)|(x1,x2) − ∂x1I(x, t)|(x2,x3)

x11 − x31
+
∂x2I(x, t)|(x1,x2) − ∂x2I(x, t)|(x2,x3)

x12 − x32
(1)

+
∂x1

I(x, t)|(x4,x2) − ∂x1
I(x, t)|(x2,x5)

x41 − x51
+
∂x2

I(x, t)|(x4,x2) − ∂x2
I(x, t)|(x2,x5)

x42 − x52
(2)

If x is a uniform mesh, then at x(2,2),

∆xI =
(I(x(1,2), t)− I(x(2,2), t)− (I(x2,2, t)− I(x(3,2), t))

∆x2
+
I(x(2,1), t) + I(x(2,3), t)− 2I(x2,2, t)

∆x2
(3)

=
I(x(1,2), t) + I(x(3,2), t)− 2I(x2,2, t)

∆x2
+
I(x(2,1), t) + I(x(2,3), t)− 2I(x2,2, t)

∆x2
. (4)

∂I(x, t)

∂t

∣∣∣
t=t2
≈ I(x, t1)− I(x, t2)

t1 − t2

I(x2, y2, t1)− I(x2, y2, t2)

t1 − t2
=
I(x1, y2, t2) + I(x3, y2, t2)− 2I(x2, y2, t2)

∆x2
+
I(x2, y1, t2) + I(x2, y3, t2)− 2I(x2, y2, t2)

∆y2
.

∆x = x3−x1

2 . ∆y = y3−y1
2 .

Assume that t1 − t2 = 1, and that

I(x2, y2, t1) = I(x2, y2, t2) + I(x1, y2, t2) + I(x3, y2, t2)− 2I(x2, y2, t2) + I(x2, y1, t2) + I(x2, y3, t2)− 2I(x2, y2, t2).

What to do at (x1, y2)?

I(x1, y2, t1) = I(x1, y2, t2) + I(x0, y2, t2) + I(x2, y2, t2)− 2I(x1, y2, t2) + I(x1, y1, t2) + I(x1, y3, t2)− 2I(x1, y2, t2).

3.5 Accuracy

After getting the β and D, we want to plug in these two values into an ODE model to check whether this
model can predicts infection numbers of that specific region. In theory, the curve of the ODE model should
fit our training data.

4 Results

We obtained the /beta and D from the 1/21/2021 to 3/1/2021 data from the JHU dataset. The prediction
for 3/2/2021 and its comparison to the actual case count are as followed:
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County Name Actual Case Predicted Case Percent Difference

0 Alameda 80873 80880 0.000090
1 Alpine 82 108 0.324086
2 Amador 3469 5780 0.666425
3 Butte 10981 11008 0.002475
4 Calaveras 1911 2041 0.068054
5 Colusa 2139 2157 0.008545
6 Contra Costa 62818 62983 0.002642
7 Del Norte 1007 1020 0.013619
8 El Dorado 9168 10500 0.145294
9 Fresno 95677 95793 0.001217
10 Glenn 2232 2358 0.056717
11 Humboldt 3219 3223 0.001315
12 Imperial 26913 3399386 125.310203
13 Inyo 1317 2522 0.915076
14 Kern 103622 104930 0.012623
15 Kings 22091 22215 0.005640
16 Lake 3164 3176 0.003803
17 Lassen 5623 5648 0.004619
18 Los Angeles 1194333 1194402 0.000058
19 Madera 15505 15601 0.006230
20 Marin 13261 13936 0.050909
21 Mariposa 395 527 0.334430
22 Mendocino 3821 3820 -0.000256
23 Merced 29195 29389 0.006650
24 Modoc 459 476 0.038033
25 Mono 1214 1227 0.011471
26 Monterey 42316 42443 0.003019
27 Napa 9056 9205 0.016508
28 Nevada 3979 9963 1.504130
29 Orange 261608 426252 0.629356
30 Placer 19882 20009 0.006434
31 Plumas 653 677 0.037004
32 Riverside 290325 238244 -0.179388
33 Sacramento 93678 93800 0.001305
34 San Benito 5772 6200 0.074179
35 San Bernardino 286814 287290 0.001660
36 San Diego 261001 261555 0.002125
37 San Francisco 34318 34438 0.003504
38 San Joaquin 67040 67091 0.000762
39 San Luis Obispo 19724 19821 0.004942
40 San Mateo 39096 39331 0.006034
41 Santa Barbara 32087 32206 0.003713
42 Santa Clara 110911 110948 0.000337
43 Santa Cruz 14700 14750 0.003444
44 Shasta 11045 -6331 -1.573222
45 Sierra 100 191 0.913028
46 Siskiyou 1779 1824 0.025715
47 Solano 30163 30382 0.007261
48 Sonoma 28222 28317 0.003368
49 Stanislaus 56323 51603 -0.083802
50 Sutter 8886 9031 0.016414
51 Tehama 5104 5119 0.003040
52 Trinity 372 3619 8.728851
53 Tulare 48086 48427 0.007104
54 Tuolumne 3963 3931 -0.007859
55 Ventura 77849 80428 0.033131
56 Yolo 12854 12935 0.006360
57 Yuba 5771 5837 0.011467
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Figure 1: Actual Cases of California, 3/2/2021 Figure 2: Predicting Cases of California, 3/2/2021

Figure 3: Heatmap of Absolute Percent Difference
Between Actual Cases and Predicting Cases of Cali-
fornia, 3/2/2021

Figure 4: Treemap of Absolute Percent Difference
Between Actual Cases and Predicting Cases of Cali-
fornia, 3/2/2021

At US country level (figure 6), the model is underestimating the number of cases. At state and county
level (Figure 7 and Figure 3), the model performs well predicting the number of cases.

5 Discussion

5.1 Reason For Inaccurate Predictions on Certain Counties

Fitted Epidemiology Models’ predictions are either overestimating or underestimating. The predictions are
off because we are isolating the state from neighboring states, county from neighboring counties; there are
constant transmissions between neighboring regions.

We want to add another variable into our Epidemiology model, the mobility, how fast are people in an
area changing locations, which can be obtained from the mobility data-set at county level. This part will be
incorporated in Winter quarter.

Later we tried on a auto supervised learning model to see what we could learn from the performance from
the such model. However, because of the limitation of the time series data set, it failed to predict the data of
the later time after training on the earlier data set .

From the map above, we can see that the counties we have really ”inaccurate” predictions are Imperial
County, Amadar County, Shasta County and Trinity County. The missing data for neighboring counties in
Arizona for the counties on edges/corners and low population can explain away some of the inaccuracy in
predictions for these counties.

Another issue needs to be investigated is the positive or negative percent difference between actual cases
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and predicting cases of California on 3/2/2021.

5.2 Training Spatial Model For Better Beta and D estimation

Right now, the β and D are derived from the implementation of Epidemiology Model itself, with out spatial
dynamics. However, for future research, β and D can be learned through Gradient Descent method in the
temporal-spatial model.

We would want to minimize the loss function, by setting the derivative of the loss function to zero and
solve the function to find the β, D and c to minimize the loss function.

Figure 5: Heatmap of Percent Difference Between Actual Cases and Predicting Cases of California, 3/2/2021

6 Appendix

[1] Professor Ma

[2] JHU public GitHub Repository https://github.com/CSSEGISandData/COVID-19/tree/master/

csse_covid_19_data

[3] Descarted Lab Mobility Data https://github.com/descarteslabs/DL-COVID-19

[4] Lipschitz continuous gradient https://xingyuzhou.org/blog/notes/Lipschitz-gradient

6.1 Code

from numpy import linalg as LA

def get_country(start_days,duration,country = "US"):

s = [332865671, 332865671, 332865671, 332865671, 332865671, 332865671,
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332865670, 332865670, 332865662, 332865655, 332865632, 332865613,

332865580, 332865503, 332865450, 332865284, 332865168, 332865093,

332864910, 332864537, 332864133, 332863571, 332862804, 332862457,

332861006, 332859167, 332856512, 332852521, 332846735, 332840254,

332831566, 332820683, 332810066, 332798351, 332781931, 332763443,

332744382, 332726361, 332705522, 332678896]

i = [ 16, 16, 16, 16, 16, 16, 17, 17,

25, 32, 55, 74, 107, 184, 237, 403,

519, 594, 777, 1150, 1554, 2116, 2883, 3230,

4681, 6520, 9175, 13166, 18952, 25433, 34121, 45004,

55621, 67336, 83756, 102244, 121305, 139326, 160165, 186791]

r = [ 5, 5, 5, 5, 6, 6, 6, 7, 8,

8, 13, 14, 18, 19, 21, 24, 28, 29,

36, 41, 55, 63, 69, 81, 112, 143, 285,

358, 480, 606, 699, 859, 1219, 1516, 2165, 2791,

3581, 5720, 9260, 11426]

p = 332865687

return s,i,r,p

def calculate_gradient(s,i,r,population,beta,epsilon):

result1 = 0 #continue adding to solve for beta

result2 = 0 #continue adding to solve for 1/D aka epsilon

for n in range(len(s)-1):

result1 += 2*(s[n+1]-s[n]+beta*s[n]*(i[n]/population))*(s[n]*i[n]/population)

result1 += 2*(i[n+1]-i[n]-beta*s[n]*(i[n]/population) + i[n]*epsilon)*(-s[n]*i[n]/population)

result2 += 2*(i[n+1]-i[n]+i[n]*epsilon-beta*i[n]*s[n]/population)*(i[n])

result2 += 2*(r[n+1]-r[n]-i[n]*epsilon)*(-i[n])

return result1,result2

def calculate(s,i,r,population,learning_rate1,learning_rate2):

beta = 0.2

epsilon = 1/14

loss = 0

length = len(s)

betas = []

ds = []

for itera in range(1000): # do it for 1000 iterations.

loss1,loss2 = calculate_gradient(s,i,r,population,beta,epsilon)

beta_new = beta - learning_rate1* loss1/length #0.001 is the learning rate

epsilon_new = epsilon - learning_rate2 * loss2/length

if (beta_new == beta) & (epsilon_new == epsilon):

print(beta_new)

print(1/epsilon_new)

break

beta = beta_new

epsilon = epsilon_new

betas.append(beta)
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ds.append(1/epsilon)

return betas,ds

def calculate_hessian(s,i,r,population):

result_beta_second = 0

result_epsilon_second = 0

result_both_second = 0

for n in range(len(s)-1):

result_beta_second += 4*(s[n] * i[n]/population) **2

result_epsilon_second += 4*i[n]

result_both_second += -2*s[n]*i[n]**2/population

return result_beta_second/len(s),result_epsilon_second/len(s),result_both_second/len(s)

if __name__ == "__main__":

#Get 40 days of US data starting on the 30th day since the first case of coronavirus in Wuhan

s,i,r,p = get_country(30,40)

top_left,bottom_right,the_other_two = calculate_hessian(s,i,r,p)

w, v = LA.eigh(np.array([[top_left, the_other_two], [the_other_two, bottom_right]]))

lip_constant = w[w>0][0]

learning_rate = 0.1/lip_constant

iterations = 1000

betas,ds = calculate(s,i,r,p,learning_rate,iterations)

plt.plot(betas)

plt.show()

plt.plot(ds)

plt.show()

6.2 Figures
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Figure 6: US Country Level, Model Predictions VS Actual Case Numbers
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Figure 7: CA State Level 40-60 Days into the Pandemic
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Figure 8: SD CountyLevel 40-60 Days into the Pandemic
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