
NBA Seeds with Graph Neural Networks

Steven Liu

Aurelio Barrios

Abstract:

The NBA contains many challenges when attempting to make predictions.

The performance of a team in the NBA is difficult because many things can happen

over the course of 81 games. Our analysis attempts to produce accurate results by

exploiting the natural structure of the NBA league and data of previous player stats.

Our analysis begins with identifying the players on each roster to create an

aggregated stat for each team, then we will take advantage of the schedules of each

team to learn the unique performance of a team against every other team.

Leveraging the features and the schedule of the teams, we expect to be able to

make decent predictions of NBA seedings before a season starts.

Introduction:

The NBA is one of the most popular sports in the U.S. It is the most followed

sports league on social media with more than 150 million followers. With this many

people keeping track of sport, we should expect that statistics on the sport will be

useful for many. An example is that we can apply our results from this project into

making sports bets. If we develop a model that can produce results with good

accuracy, then we can potentially use this model to place winning bets on the sport.

Our assumption is that the schedule of a team matters on their rankings in the

season, this could make the NBA management aware that the schedule is making

the determination of the seedings or likelihood of winning the competition unfair

for some teams. This hasn’t been something that has been addressed in U.S. sports

yet despite similar concerns from fans and casters. It is common knowledge that

the ‘Eastern Conference’ has always contained weaker teams compared to the

‘Western Conference’ which made achievements from the ‘Eastern Conference’ less

acknowledged. Hopefully, we can make it more obvious that some of the ways the

league conducts itself is unfair.

The data we decided to use for our model will simply be player stats, team

rosters, and team schedules. With team rosters, we will be able to determine the

aggregate team stats with the player stats, and knowing the match ups between the

teams, we will be able to get an understanding of how difficult the season will be for

each team. The relationship between teams will be represented with an edge, and

each team will be a node. Each node will contain an aggregation of player stats, and

we will have a fully developed graph network to input into our graph neural

network model.

We will be implementing two models to predict the seedlings of the teams.

We will apply the classical Graph Convolutional Network, GCN and GraphSAGE to

our network. With these models we will be able to perform experiments such as

moving players around the teams and observing the change in seedings.

Prior Work:

FiveThiryEight, a popular analytics website, developed their own NBA

Ranking Prediction model. The model they developed is called RAPTOR

However, their model only looks at individual players stats and their projected stats

in the future with similar NBA players. It completely ignores the record of a team,

and the difference in performance they would have across the different teams they

would have to face. NBA seedings predictions are heavily influenced by the

performance in the current season, but this also makes predictions less impressive.

In our work, we are able to take advantage of the large amount of data from

previous NBA seasons starting from 1946. This allows our model to have a plethora

of data to learn from which will allow us to make accurate predictions without

looking at the statistics from the season we want to predict.

Methods:

When implementing the traditional GCN, the GCN model is initialized with

the number of nodes, n, number of hidden layers, l, and the number of classes, c.

Inside the GCN model, we have the GCN layers which are initialized with an

adjacency matrix of structure of the graph, A and the feature matrix, X. The shape

of the adjacency matrix should be n x n. Thus the feature matrix would be n x f,

where f is the number of features. We will use ReLU as the activation function, σ, of

these layers and use a softmax to make the classification. To train and test the

model, we will need to call the forward method of the GCN model, which will take

an adjacency matrix of node edges, and a feature matrix. There is a parameter in the

GCN forward method to specify whether you want to use Kipf & Welling’s

normalization of the adjacency matrix, A, or to leave it unnormalized.

The left formula shows how the layer will be computed without normalizing A,

while the right shows how it will be computed with normalizing A. The model can

use cross entropy loss to tune the weight parameters in each GCN layer. In our

case, we will use a categorical cross entropy loss.

GraphSAGE will create batches of neighborhoods and aggregate the information

from these neighborhoods into a new feature matrix. The forward method will take

in a batch of nodes, b and the depth size, k to develop a neighborhood. The model

will then use b and k to create a subsample of A, an adjacency matrix that defines

the neighborhood of every node in batch, b.

The batch of nodes, b and subsample of A will be then used as input to the

GraphSAGE aggregators, mean and pooling that can also be specified as a

parameter in the forward method.

The mean aggregator layer will output a feature matrix that contains the

average of neighborhood features. The pooling aggregator layer will output the

original feature matrix b, concatenated with the pooling of the neighborhood for

each node in b. The forward algorithm here should return a feature matrix for each

node. In order to make the algorithm more efficient, we can use matrix

multiplication instead of a for loop in line 3.We will multiply the matrix of the last

iteration, h, with A. This results in a matrix that contains the sum of the features of

every node. We can tweak this updated matrix depending on which aggregator we

decide to use. What makes the GraphSAGE loss function interesting is that it only

requires the output of the GraphSAGE model as input.

The loss function is calculated based on the similarity between the input, thus it

doesn’t need to know the true label of a node. It is also possible to use stochastic

gradient descent as the loss function. The parameters that will be tuned are the

weights of the aggregator layers.

We will be testing the performance of the GraphSAGE model with it’s

different aggregators, Mean, MeanPooling, maxPooling and Sequential. We will

compare the performance on the test set we get for each aggregator by developing

plots of Loss vs Epochs for each of the aggregators. With this information, we

should be able to determine one aggregator to use for the rest of the report.

To obtain our data, we used some third-party code to scrape the

basketball-reference.com website for player statistics, team rosters, and team

schedules. We had to modify some of the code in order to get the data cleanly. Then

with this code, we are able to obtain data from whatever season or team listed in

the basketball-reference website which contains a large amount of data.

After scraping the data from the website, we need to reformat the data into a

compatible format for our models. Some problems with the data is that there was

the TOT team which consisted of the overall stats of players that were traded, due

to our time constraint we weren’t able to incorporate this data into our data even

though we are sure it would’ve been helpful.

In order for our web-scraped data to be useful for our model we needed to

change the data from individual statistics to team statistics. In order to do this we

had to aggregate all the statistics of players in their respective teams. In order to do

this we had to find a way to include the data of a team as a whole, while also

preserving the data of the individual players. We did this by taking into account all

possible combinations of data for each team. For example, each player had a points

(pts) statistic in their original data format. In order to take into account this statistic

at a team level we averaged all the points for every player in a team. This is fairly

straightforward, but what we also did was take into account the minimum and

maximum values of points in the team while also taking note of the standard

deviation. This way our data takes into account the team as a whole and if there are

any notable statistics, maybe a team had a player who scored significantly more

points than the rest of his team, we can also take those into account. We did this

across all the features originally found and ended with 184 features for each team in

the NBA. After formatting the data, we saved them as csv files to use as input to our

models which can be specified for faster results as scraping and formatting the data

will take some time.

We realized that when predicting seeds, we don’t need to penalize the model

too harshly when making predictions that are wrong, but close. To encourage this,

we decided to use binary labels instead of the actual rankings, this way the model

would be able to take the advantage of its loss function better. The binary label

would be whether the team made it or did not make it to the playoffs. However, we

also need to modify our GraphSAGE model to output probabilities instead of a label,

this is because we will use the probabilities of each label to determine the rankings

of each NBA team. We will rank the teams based on their probability of making it to

the playoffs. This method will increase the accuracy because it gives the model

more data to work with for each label.

For our model, we need to decide how many seasons or years of the NBA will

belong in our training set. Understanding sports, we know that if we include too

many years, then this will cause the results to be inaccurate as players do tend to

age and you shouldn’t expect a player from 20 years ago to perform just as well

today. This idea applies the same to teams, and generally you can see a shift in the

best teams change around every 5 years. We will be testing the data with training

sets from the last 1 to 10 seasons of the NBA, and whatever seasons that aren’t used

will be put into the validation set. Based on the results of this, we will be able to

determine the proportion of seasons to use in the training and validation sets of the

model.

Results:

This section will contain the results of predicting the NBA Ranking of 2019,

with data from 2011-2018.

Model Accuracy Comparison

Model Test Accuracies

GCN 53.33%

GraphSAGE Mean 80.00%

GraphSAGE MeanPooling 70.00%

GraphSAGE MaxPooling 76.67%

GraphSAGE Sequential 73.33%

GraphSAGE outperformed the traditional GCN by around 20%. The best

aggregator for our model was the mean.

It was able to predict 80% of the rankings correctly, but we believe that the model

has much room for improvement. We were unable to test the MaxPooling and

MeanPooling aggregators as we’d like because of the time-constraint. Both of those

models took a long time to run and we were unable to use them to their full

potential. Despite this, we are satisfied with the accuracy we found.

Training Seasons Performance

We believe that the number of training and validation seasons used is

extremely important. The difficulty in doing this is that validation sets are required

for training sets, but ideally we would also like to use the validation sets as training

for our test sets. This is because the most recent years from the test set would have

the biggest influence in making predictions. We were unable to test this due to our

time constraint, but we were able to determine that with our data of 10 seasons,

using all of the data would lead to our best accuracies. This means that in the

future, maybe if we include more than 10 seasons then the model accuracy would

increase even more. This should be easy to implement as we already have the base

code to retrieve and preprocess that data. We are also confident that our model will

be able to scale with this increase in data perfectly if using the mean aggregator.

Conclusion & Discussion:

We were able to develop a model that inputs player stats, team rosters, and

team schedules that would predict the rankings of each team. When using data

from the 2011-2019, we were able to predict the ranking of the 2019 teams with 80%

accuracy with GraphSAGE’s mean aggregator. This model took around an hour to

run, but MaxPooling and MeanPooling had to run overnight, which led us to not be

able to experiment with them as much. This means that we have not been able to

fully explore that effectiveness of other aggregators which may prove to be better

than our current model. An improvement that we feel would be most effective is to

incorporate validation sets into the training sets for test sets because recents years

of the test set should influence the rankings more. There is also much room for

feature selection as we had a very simple feature selection/aggregation. The

importance of star players means a lot on a team, an our data pipeline only records

that stats of the best player stats, but we believe that it would be important to

record the stats of the 5 best players, the starters because these are the players

that will get the most minutes in the game, thus the most influence on the

game/team. The model could also be modified to look at more specific predictions

rather than just seedings. We feel that it would be more useful to predict the

outcome of matches as this is information that would be able to produce results

and be used almost immediately. We are confident that with more research using

Graph Neural Networks will drastically improve accuracy in predicting rankings as

well as have an impressive accuracy in predicting many other labels.

References:

Inductive Representation Learning on Large Graphs. W.L. Hamilton, R. Ying, and J.

Leskovec arXiv�1706.02216 [cs.SI], 2017.

Appendix:

https://arxiv.org/abs/1706.02216

https://files.slack.com/files-pri/T01CPNRM20H-F01QF04RY59/resultsmodelsloss.png

