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1. Abstract 

This research focuses on 3D shape classification. Our goal is to predict the category of 

shapes consisting of 3D data points. We aim to implement Graph Neural Network models and 

compare the performances with the PointNet, a popular architecture for 3d points cloud 

classification tasks. Not only will we compare standard metrics such as accuracy and confusion 

matrix, we will also explore the model's resilience on data transformation. What’s more, we tried 

combining PointNet with graph pooling layers. Our experiment shows that even though PointNet 

has a higher accuracy overall, GCN has much more reasonable misclassification and is much 

more robust to data augmentation.  

 

2.   Introduction 

Currently, 3d data has been widely used in a lot of industries’ fields such as 

automatic-driving, virtual-reality,  gesture recognition, etc. There are two major structures to 

represent 3d data: the first one is 3d grids and the second one is 3d points cloud. 3d grids are 

created based on 2d images. Instead of using a 2d array to represent the pixel values in the 2d 

grid, the 3d grid uses a 3d array to represent ‘true/false’ or pixel value in a specific location. 

Since the similarities between the data structure, lots of researchers tried to apply Convolutional 

Neural Network which originally developed on images on 3D grids. There are lots of successful 

works. However, 3d grid is not a memory-efficient data structure for storing 3d shapes, and thus 



3d CNN also wastes a lot of time/memory if used for predicting the 3d shapes. For example, we 

now only have 4 points {(100, 100), (100, -100), (-100, 100), (-100, -100)} representing a cube 

in 3d space. If we want to use 3d grids representing this shape, we need to create a 100*100*100 

arrays for storing information and 99.99% of the memory used are waste.  

The 3d points cloud is created to save 3d shapes which solves the problem that 3d grids 

have. That is the reason why most of the 3d radar in the industry use this structure, and why it is 

so important to have models that make predictions based on it. The 3d point cloud is just a set of 

3d points where all points are like (x,y,z). A famous model for 3d points cloud data is PointNet. 

It is used for shapes classification, objects segmentation, and scene segmentations. It is a model 

which is designed directly based on the set of the 3d points. However, 3d points cloud could also 

be seen as a graph. The nodes are the points and the edges represent the connection between 

points. In this project, we aim to use Graph Convolutional Network to predict 3d shapes based on 

3d point cloud data. We will compare our results with our baseline model - PointNet and we will 

also try to combine graph layers and Pointnet.  

In this report, the Data section will discuss the dataset we used. The Graph Construct 

section will talk about how we construct graphs on points clouds. The Model section will discuss 

the models’ architecture we designed, and finally the Result section will discuss the running 

outcomes and performance of our models. We also provide links for the code and the website in 

the appendix.  

 

3.    Data 

In this project, we will mainly use the ModelNet40 as our dataset. This dataset contains 

40 categories such as airplane, TV_stand, guitar, etc. Each category has around 500 samples and 



every sample contains 3k-80k points. Points are all in the format of euclidean space coordinates 

(x,y,z). The range of the coordinates is not unified and varied a lot. Some samples may have 

points all in the range in (-100, -100, -100) to (100, 100, 100) while some may have (-4000, 

-4000, -4000) to (4000, 4000, 4000). This difference could result in imbalance models’ 

parameters training and thus we used min-max normalization to normalize all points in all 

samples to range (0, 0, 0) to (1, 1, 1). Not only could normalization help us train a balance 

model, but also it will be convenient for us with the graph construction. Since the fix-radius 

graph construction needs a unique hyper-parameter r, instead of finding a best choice of r for all 

samples, we could simply use one number if we normalized our data first. 

Sampling is also a key procedure. Samples with categories like air_plane, cars, or guitar 

usually have 60k+ points. Using 60k+ points will construct a graph with 60k+ nodes and 

600k-1200k+ edges. The data dimension is too big to train the model efficiently and at the same 

time, increase the running time for data-loading and graph-construction. Not to mention that 

most of the points are unnecessary in model’s training. In lots of cases, datasets include the inner 

points, which do not contribute to the determination of the category’s shape. What is matter are 

those surface points which construct the shape of the sample. In our project, we decide to 

randomly select 1000 points for all samples. Some may doubt that the size may be too small 

while our baseline model PointNet shows that 1000 points are indeed sufficient. What’s more, 

since we regularize the number of points, we do find implementing the model's architecture more 

easily since we have a unified input shape.  

Below are three images of the raw data, the normalized data, and the sampled normalized 

data. We could see that even after the sampling process, we still could clearly tell the object’s 

shape.  



 

Graph 3.1: Raw data; “Car” 

 

Graph 3.2: Normalized data; “Car” 



 

Graph 3.3: Normalized and Sampled data; ‘Car’ 

After models-training, we also tested our model’s performance on a different dataset 

ShapeNet. ShapeNet is a public 3d points cloud data and shares a lot of the same categories with 

ModelNet40. Through testing on samples that models have not seen in the training process, we 

could measure our model’s elasticity. 

Data augmentation is also used in this project to improve the accuracy and measure 

models’ resilience. Our goal is to train models predicting the shape of a point cloud. Therefore, if 

the incoming points: 1. Globally translate with one direction; 2. Rotate a certain angle; 3. Stretch 

or squeeze with a degree in certain ranges, our model should be able to predict the same result. In 

this project, normalization will help us deal with transformation and we used the data 

augmentation testing the left two.  

 

4. Graph Construct 



In order to train a Graph Neural Network, we need first convert our dataset into a 

collection of graphs. To be more specific, we need an adjacency matrix or adjacency list to 

represent the edges’ information. In this project, we used two different ways to construct the 

graph. The first one is the fixed-radius distance. We calculated the euclidean distance between 

each node and set a threshold. Any node that is farther away from one node than this distance 

will not be considered as one’s neighbor. For nodes that are the range of this distance, we will 

store the distance either by a distance matrix or an adjacency list. The second method is using 

k-nearest-neighbors to find k most nearest neighbors of one node. Then storing either the 

distance or simply binary information as a matrix or adjacency list. The advantage of using 

fix-radius is that for different nodes, we can have different connection density. Thus we could 

distinguish nodes' popularity. For example, a node with lots of neighbors may be located right in 

the center of the shape while a node with few neighbors is in the corner. From the model's 

training perspective, this could help us aggregate the node’s features' information. The features 

of nodes with more neighbors will be aggregated more often and thus play a more important role. 

The drawback of fix-radius is that the value of the hyper-parameter ‘r’ is hard to define. 

Different r values could result in a highly different graph and thus affect our model’s result. In 

general, a higher value of r could result in a more dense graph while a smaller number could 

result in a more sparse one. In our model’s comparison process, we will compare our models’ 

performance on datasets generated by different r values. Below are images of graphs that are 

constructed based on the same data points but with different r values. 



 

Graph 4.1: Graph constructed with r = 0.1 

 

Graph 4.2: Graph constructed with r = 0.2 



 

Graph 4.3: Graph constructed with r = 0.3 

The advantage of using k-nearest neighbors is that we could have the same neighbors for 

all points thus we do need to worry about the hyper-parameter setting in-class 

influence.However, it is also the drawback since we could no longer apply the connectivity of 

one node to others in our models. We will use both methods to create datasets and train our 

models on each one. The comparison results will be discussed in the Result section.  

 

5. Models 

In this section we will discuss models’ implementation details. Graph Convolution 

Network (GCN) is our main focus. PointNet is used as a baseline model. Since it is only used for 

comparison, we designed it simply and similar with our GCN’s architecture. In the last part, we 

will discuss the effects of combining graph pooling layers with PointNet. All three models are 

predicting on a points set. Thus, all models should be invariant to permutation. In other words, if 

we change the order in which we pass in our data points, the predicting results should always be 



the same. Thus, maintaining this speciality is an important key in implementation of models. We 

will discuss the permutation invariance of the three models in the corresponding section.  

 

5.1 PointNet 

PointNet is a well known model’s architecture and widely-used in 3d points data machine 

learning tasks. It fully used the Multi-Layer-Perceptron (MLP) and symmetric functions to 

maintain the model’s permutation invariance. More specifically, MLP is a layer that is trained to 

learn a function for all the points. Letting be the function MLP learned. For all points, the δ  

parameters of are all the same. Thus, set should always be theα* δ  δ(α ), δ(α ), ..., δ(α ) }{ 1  2   n   

same for all permutation of set of points } . Connected MLP with symmetric α , α , ..., α  { 1  2   n  

functions such as max-pooling or mean-pooling will help us to reduce the data dimension while 

at the same time still keep the permutation invariance. After multiple blocks of MLP and pooling 

layer, we transform our data points to a feature vector and use them to predict the class labels. 

When implementing the code, we choose to use the convolution 1d layer to represent the MLP 

layer. The full architecture is shown below: 



 

Graph 5.1: PointNet Architecture 

PointNet is only used as a baseline model in our project. Thus we only keep its core 

layers and design it simply. The architecture is similar to the architecture of our Graph 

Convolutional Network. We also implemented a Graph-Pooling-PointNet model in which we 

added two graph pooling layers between the MLPs to reduce the dimension. The full architecture 

is shown below: 



 

Graph 5.2: Graph-Pool Pointnet 

 

5.2 Graph Convolutional Network 

The core component of Graph Convolutional Network (GCN) is the graph convolutional 

layer. Traditional convolutional computation is based on matrix-shape data. Compared with 

traditional convolution, graph convolution computation is based on graph architecture, to be 

more specific, the edges. Either through multiply with adjacency matrix or one-by-one 

aggregating through edge list, graph convolution extracting features for a node from its 

neighbors. Similar to what we did in PointNet, we first transform our features to higher 

dimensions (3 to 32 and to 64) using GCN layer. Then by down-sampling through the graph 

pooling layer, we reduce the sample size. After pooling, we again use GCN layer to transform 

our features space back to the class-size dimension for predicting. The model is ended with a 



softmax function to calculate the probability for each category. The full architecture is shown 

below. 

Graph is indeed a permutation-invariant structure. No matter what order we passed in the 

points, we will always construct the same graph. What’s more, GCN layer and graph pooling 

layer are all based on graph architecture. Through connecte them with non-linear layers, our 

GCN model should be permutation invariant as a whole. 

  

Graph 5.3: GCN 

 

5.3 Future Direction: GCN-PointNet 

One further potential model architecture that may boost the accuracy is combining MLP 

layer with graph aggregation. To be more precise, after MLP learns a function that transforms all 

points through a same function with the same weights and bias, multiply the outcome with an 

adjacency matrix and distance matrix that was created from the graph construction method. This 



model’s architecture combines the advantages of GCN layer and PointNet layer and we expect it 

will have better performance. This model is still in the WIP state and we will update to our code 

repository.  

 

6. Results 

In this section, we are going to: 1. Compare the accuracy and confusion matrix of GCN 

and PointNet; 2. Discuss hyper-parameters’ effects. 3. Discuss the use of pooling layers. 4. 

Discuss GCN and PointNet’s resilience on data augmentation. 

 

6.1 GCN vs PointNet: 

In our experiment, the best accuracy we found using GCN on 10 categories classification 

is 57%±2.7%. The deviation is caused by the sampling difference happening in the graph 

construction process and as well as the model’s initiation values. The parameters used for this 

result is {‘pool’: SAG, ‘ratio’: 0.4, ‘val_size’: 0.2, ‘lr’: 5e-4, ‘epoch’:30, ‘batch_size’: 32}. 

PointNet, on the other hand, got a best accuracy 68% on the same dataset. Training both two 

models on transformed 40-categories data will both get a much worse result - GCN will have a 

best accuracy of 27% and PointNet will have 45%. The reason is that we used 1000-points 

sampling to build our training dataset while in some categories, most of the samples could not 

meet this threshold and thus create a highly imbalanced dataset. In general, PointNet seems to 

have a better accuracy overall. Looking at the accuracy curve given below, we could find that 

both two models converge really fast. The accuracies will not change much after 10 epochs.  



 
Graph 6.1: Accuracy 

 
Accuracy is a major metric used in classification tasks but it could not show everything. 

We also plot two confusion matrices for each model. Below we provide the plots of each 

confusion matrix.  



  

Graph 6.2: CF-GCN 



 

Graph 6.3: CF-PointNet 

Through the confusion matrix for GCN (Graph 6.2), we could see that: 1. GCN has a best 

performance on ‘airplane’ and ‘chair’ while has a bad prediction on ‘bookshelf’, ‘toilet’, and 

‘vase’; 2. GCN tends to misclassify ‘toilet’ and ‘vase’ as ‘chair’, and misclassify ‘bookshelf’ as 

‘bed’; 3. The misclassification is not caused by the imbalance numbers of training samples. This 

is because GCN predicts the ‘monitor’ which contains less samples pretty well while doing a bad 

job on ‘toilet’ and ‘vase’. Both of them contain a farewell number of samples. 4. Taking a look at 



the misclassified samples of GCN, we can see that the misclassification is reasonable and related 

to the shapes of the data.  

 
        ​Original: Toilet; Predict: Chair                      Original: Vase; Predict: Chair                   Original: Bookshelf; Predict: Bed 

Graph 6.4: Shapes 

On the other hand, the confusion matrix for PointNet (Graph 6.3) shows that: 1.PointNet 

predicts all 8 classes very well except the ‘chair’ and ‘monitor’. 2. PointNet tends to misclassify 

‘monitor’ as ‘airplane’. In the training dataset, ‘airplane’ has the second most training samples 

and ‘monitor’ has the third least training samples. This shows that PointNet’s misclassification is 

more related to the number of samples instead of the shape itself. We could also see from Graph 

6.5 that it is hard to tell that ‘airplane’ is similar with ‘monitor’.  

  

Graph 6.5: Airplane and Monitor 



Putting it all together, we found that in general PointNet has a better accuracy than GCN 

while GCN’s misclassification is more reasonable and more fit with the shape’s similarity. We 

expect that if training on a more decent and large dataset, GCN could perform better than the 

PointNet. 

 

6.2 Hyper-parameters: 

In this project, we used brute force to search the best parameters’ combination. Due to the 

hardware and time limitations, we searched in a small range. However, we could still see some 

general trends from the result. 

The most significant parameter which affects the results a lot is which pooling layer to 

use and the ratio used in the pooling layer. In this project, we tried SAG (Self-Attention Graph) 

pooling layer and ASA (Adaptive Structure Aware) pooling layer. Both pooling layers are based 

on graph architecture and they both use a hidden Graph Convolutional Layer (GCL) for scoring. 

The difference is that SAG used GCL to score the importance of nodes within a cluster while 

ASA used GCL to score the clusters. In other words, SAG is pooling nodes through all clusters 

while ASA is pooling clusters. You can find two corresponding papers in the appendix section. 

Our experiment shows that in our task, SAG pooling has a much better performance than ASA 

pooling. From the graph 6.6, we could see that almost every combination using SAGPooling 

performed better than ASAPooling. Also, the right graph shows that SAGPooling in general has 

a 10% higher max-accuracy. 



  

Graph 6.6: Pooling Layer 
The parameter ‘ratio’ used in the pooling layer also plays an important role. In our 

experiments, the result shows that compared with a slight larger pooling ratio (0.6 means after 

pooling, the data size will be 0.6 of the original), a smaller ratio (0.4) could have a better 

accuracy. This is shown through Graph 6.7. 

  

Graph 6.7: Ratio 

We also tried different settings of traditional hyper-parameters in deep learning such as 

learning rate and batch size. It turns out that learning rate does not have much effect on final 

results as long as it is smaller than 1e-3. Batch size, on the other hand, though did not have much 

influence on the best accuracy, it has effects on the efficiency. In Graph 6.8, we could see that 

with a larger batch size, the model converges much faster and reaches its best accuracy a few 



epochs before small batch size. This is reasonable since with a larger batch size, we updated our 

weights with a larger batch data and thus have a more efficient training procedure.  

 
Graph 6.8: Batch size 

The last thing we want to talk about is the graph construct methods. We talked about two 

graph construct methods fix_radius and KNN in the graph construction part. We tried four 

different hyper-parameter settings (k and r) for each method. Through Graph 6.9, we could see 

that KNN is generally better than the fix_raius. The reason, from our perspective, is that KNN 

will construct a more balanced graph which basically will have zero disconnected nodes and 

every node will have an equal number of edges.  



 
Graph 6.9: Graph Construct 

 
6.3 Pooling layers 

In the model section, we mentioned that we will also train a Graph-Pooling-PointNet 

model. However, this model has the worst result. The best accuracy is about 24% on 

10-categories dataset. The reason why graph pooling works on GCN but not on pointnet is that 

GCN model used graph convolutional layers ahead of graph pooling layers. The graph 

convolutional layer will aggregate the information within a neighborhood/cluster. Thus when the 

SAG pooling layer pools out nodes that are considered as less significant nodes in the cluster, 



their information will maintain in their neighbors. In other words, connecting graph 

convolutional layers with graph pooling layers will not lose much information while at the same 

time, reduce the sample size. However, MLPs in pointnet do not aggregate information within a 

cluster. Thus, if we connect MLPs with graph pooling layers, we actually lose every nodes’ 

information we pool out. This also explains why the SAGpooling layer has a better result than 

the ASApooling layer in our project. The reason is that the graph convolutional layer and the 

SAGpooling layer make up for each other and have really good results.  

The following graph shows the pooling results after the pooling layer. 

 

Graph 6.10: Original-First Pooing-Second Pooling; Points 

 

Graph 6.11: Original-First Pooing-Second Pooling; Graphs 

 

6.4  Resistance on data augmentation  



Our models are trained to predict the shapes. Despite the permutation-invariance we 

talked before, a good model should also be invariant to different data transformations such as 

enlarge, shrink, and translation. In our project, we tried three different data augmentations and 

used them to test GCN and PointNet’s resistance. The results is shown in the below table: 

 

Table 6.1: Augmentation 

We could see that PointNet has a much worse resistance than GCN. If the data is 

stretched or shrunk, the pointnet will no longer recognize it anymore. On the other hand, GCN 

model even did really badly on shrunk data, it did really well on translated data. The stretch 

procedure is done by multiplying the original data with 100, the shrink procedure is done by 

multiplying 1e-2, and the translate procedure is done though adding 0.1 to all points within a 

sample. Three transformations could be seen through the following graph. 



 

Top Left: Original; Top Right: Shrink; 

Bottom Left: Enlarge; Bottom Right: Translate 

7. Conclusion 

All in all, our project shows that: 1. In general, PointNet has 11% higher accuracy than 

GCN on ModelNet data. 2. GCN has more reasonable misclassification. 3. Pooling layers work 

well in GCN while not in pointnet. The reason is graph convolutional layers make up the loss 

information. 4. GCN has a much more robust resistance on data augmentation.  

 



8. Appendix 

“Self-Attention Graph Pooling”, Junhyun Lee, Inyeop Lee, Jaewoo Kang, 

https://arxiv.org/pdf/1904.08082.pdf 

“ASAP: Adaptive Structure Aware Pooling for Learning Hierarchical Graph Representations”, 

Ekagra Ranjan , Soumya Sanyal , Partha Talukdar,  ​https://arxiv.org/pdf/1911.07979.pdf 

Our project code: ​https://github.com/ctwayen/GNN-Points-Cloud 

Our project website: ​https://ctwayen.github.io/Graph-Neural-Network-on-3D-Points/  
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