
Autonomous Navigation Visualizations and Interface

Yuxi Luo
Halıcıoğlu Data Science Institute

University of California, San
Diego La Jolla, CA, 92093

yul884@ucsd.edu

Seokmin Hong
Halıcıoğlu Data Science Institute

University of California, San
Diego La Jolla, CA, 92093

sah073@ucsd.edu

Jia Shi
Halıcıoğlu Data Science Institute

University of California, San
Diego La Jolla, CA, 92093

jis283@ucsd.edu

Abstract
Autonomous navigation requires a wide-range of
engineering expertise and a well-developed
technological architecture in order to operate. The focus
of this project and report is to illustrate the significance
of data visualizations and an interactive interface with
regards to autonomous navigation in a racing
environment. In order to yield the best results in an
autonomous navigation race, the users must be able to
understand the behavior of the vehicle when training
navigation models and during the live race. In order to
address these concerns, teams working on autonomous
navigation must be able to visualize and interact with
the robot. In this report, different algorithms such as A*
search and RRT* (Rapidly-exploring random tree) are
implemented to create path planning and obstacle
avoidance. Visualizations of these respective algorithms
and a user interface to send/receive commands will help
to enhance model testing, debug unexpected behavior,
and improve upon existing autonomous navigation
models. Simulations with the most optimal navigation
algorithm will also be run to demonstrate the
functionality of the interactive interface. The results,
implications of the interface, and further improvements
will be discussed in the following sections.

I. Introduction
An important aspect of path planning and obstacle
avoidance with regards to autonomous driving is
efficient pathing. In order to create the most efficient
path, data must be fed as an input in order to derive the
best possible output. Visualizing this output and
interacting with the robot will help to identify the most
desirable path and help the vehicle avoid obstacles to
maneuver from point A to point B. This concept can be
applied to any moving robot as it will have to avoid
obstacles in order to arrive at the desired destination.
Creating an interactive interface platform that allows
the user to view the vehicle’s current path and
navigation sensor information will further help the

vehicle efficiently navigate autonomously. In the
following section, methodology for developing an
interface and efficient path navigation will be described
in further detail. Following the methods section, this
report will describe the results and impact of allowing
the user to view real-time vehicle information while
having the ability to control the vehicle.

II. Methods
Due to the current state of the pandemic, all
autonomous navigation racing platforms have been
pushed back indefinitely. In order to compensate for the
lack of off-line races, simulated racing tracks have been
created with the help of students from our domain. To
continuously improve and test the efficiency of our
autonomous navigation while avoiding the risks of the
pandemic, most components of this methodology will
utilize the Gazebo simulator [1], which will be the
platform that supports the simulated online racing
tracks. The Gazebo simulator is primarily used in
conjunction with the Linux operating system, and as a
result, Linux OS is the desired operating system due to
increased compatibility. Other important components of
this methodology will include OpenCV library, Gazebo
Simulator, RViz, Rosbridge, and many ROS packages.

A frequent bottleneck that may arise is the lack of
compatibility between some Ubuntu Linux versions
with some ROS launch files provided. It must be noted
that Ubuntu version 16.04 and version 18.04 would
work better with version ROS Kinetic and ROS
Melodic respectively. If a different version of ROS
were to be installed with another version of Ubuntu,
errors are likely to arise frequently. With this
information in mind, it should be noted that the
methodology presented will be developed in Ubuntu
version 16.04 and ROS Kinetic.

The primary step taken was to ensure that each
hardware and software components were working

mailto:yul884@ucsd.edu
mailto:sah073@ucsd.edu
mailto:jis283@ucsd.edu

properly to reflect real-life autonomous navigation.
Data collection and processing was completed using the
TurtleBot robot [2], a personal robot kit with
open-source software that supports ROS and more
importantly, ROS Navigation packages. Instead of
physically using these TurtleBot robots in real-life, they
were virtually spawned using the Gazebo simulator,
which created a workspace to test different algorithms
on the TurtleBot robots in different environments and
maps. The TurtleBot uses the Intel Realsense R200
camera and an LDS-0 360 Laser Distance Sensor as its
default hardware sensors. Because the robot built for
real-life autonomous navigation uses the Realsense
D455 camera and a SICK Lidar, the configurations for
the TurtleBot’s default camera were changed to the
Realsense D435 camera and the default lidar to the
Hokuyo Lidar. The objective in these changes is to help
decrease the hardware discrepancies between the
Gazebo simulations and our real-life robot.

Once the TurtleBot was properly configured, our group
was able to spawn the UCSD racing track [3] on the
Gazebo simulator, depicted in Figure 1. This racing
track accurately reconstructs the off-line track that our
domain used to assess different path planning
algorithms before pandemic restrictions were
strengthened. After this setup was completed, our group
was able to perform G-Mapping using the TurtleBot.

Figure 1: UCSD Racing Track on Gazebo Simulator

G-Mapping [4] uses ROS Navigation and ROS
Perception packages to provide a laser-based 2-D
occupancy grid map from laser and position data
collected by the robot. To create the grid map using
G-Mapping on the Gazebo simulator, our group
launched multiple ROS nodes using “roslaunch.” After
launching into the UCSD race track map using Gazebo,
we used a keyboard to navigate through the map while

the lidar saves its LaserScan data into rostopics along
with positional data. After scanning through the map,
our group was able to save this scanned map into a
“.yaml” file which consists of the map’s meta-data,
depicted in Figure 2.

Figure 2: Visualization of “.yaml” file map meta-data

Using the 2-D occupancy grid map created using
G-Mapping, different path planning algorithms could
be implemented to help the TurtleBot navigate
throughout the race track. Our group implemented two
path-planning algorithms, the first algorithm is a
search-based algorithm called A*. The A* algorithm is
a heuristic search to find the shortest path in the least
number of computations. Given a starting and end
point, the algorithm is tailored to explore paths only in
the direction of the goal. To navigate in the shortest
path, priority is given to the nodes that have a lower
estimated distance to the end point, which is calculated
using the euclidean distance. The second algorithm our
group implemented is a sampling-based algorithm
called RRT*. The RRT* algorithm creates a path by
building a tree from the starting position of the robot.
Different points are sampled from the initial position,
and they are checked for any collisions with obstacles.
If the point does not cause collisions, it is added to the
tree with the nearest point as its parent node. This
process repeats until a path is found from the initial to
the destination point.

Using the grid map generated, these theoretical
algorithms generate a /move_base/goal rostopic that
moves the robot from a starting point to an initial point.
This process can be computed and visualized in RViz
[5], a robot visualizer ROS package. Rviz allows the

move_base rostopic generated to be visualized inside its
own interface. Using ROS nodes, Rviz allows the user
to input a “goal” for the vehicle to autonomously
navigate using the 2D Nav Goal button, depicted in
Figure 3. When the user uses the goal button to set a
destination point, the robot’s current location will be the
starting point. Once the robot begins moving towards
its given destination, a local and global planner could
be seen that visualizes the robot’s current pathway and
final pathway. The local planner (green line) displays
the current pathway of the robot, and the global planner
(blue line) displays the calculated path generated from
the algorithms that the local planner will eventually
follow. A demonstration of the RViz interface can be
found in the hyperlink below:

RViz Navigation

Figure 3: RViz 2D grid map visualizing G-Mapping

RRT* and A* algorithms are two common algorithms
used in the field or robotics for search and navigation,
with the preference skewed towards the former. Our
group was able to implement these two navigation
algorithms using G-Mapping, and now our group will
try to compare these two algorithms based on different
metrics that will determine which algorithm is more
efficient in autonomous navigation.

For precise and direct comparisons, each respective
algorithm was implemented using the Python
programming language [6], where they will be run and
tested against each other to evaluate performance.
Instead of running the navigation algorithms in a
Gazebo or ROS based simulation, each respective
navigation algorithm was run using binary grayscale
mapping or track images. In order to evaluate the speed

and robustness of each of these algorithms, each
algorithm was tested on a base maze image that is
labeled “maze.png,” depicted in Figure 4.

Figure 4: Base image referring to “maze.png”

In Figure 5, the RRT* algorithm is run on the base
mapping image of “maze.png”. The red nodes refer to
each node that is created and branched out of the tree
starting from the starting point. The green lines
represent the paths connecting each node that has been
branched out since the original starting point. Once the
nodes continue to branch, they will iteratively continue
through the map in search of connecting to the
destination node. Once the nodes can be connected
through the RRT* branching method, the blue line
represents the best path created in the tree based
iterative node connecting process seen in RRT*
algorithm. In Figure 6, the A* algorithm is run on the
base mapping image as well. It should be noted that this
image is inverted when computing for the best path.
When loading in the data with CV2 [7] functions, there
were default settings that inevitably inverted the image;
this leaves room for improvement in the future to fix
the inverted image effects of CV2. The yellow aspects
in Figure 6 shows the graph traversal process that the
A* algorithm is performing to ultimately connect the
starting node to the destination node. The red line in the
respective figure represents the best path that is created
after the traversal process has been completed.

https://youtu.be/QhUCZs9HNRg

Figure 5: RRT* algorithm path creation on “maze.png”

Figure 6: A* algorithm path creation on “maze.png”

Both RRT* algorithm and A* algorithms were run 10
times each to determine the average runtime of finding
its best respective path. The results can be found in the
following table below referenced as Figure 7. As seen
in the results, the metrics ultimately decided on for
determining the algorithm robustness and performance
were average completion time in seconds given 10
iterations and number of algorithm failures throughout
all 10 iterations. Intuitively, it makes sense to yield a
lower completion time to find the best path as that
implies that the algorithm will find the best path faster.

Additionally, the fewer failures with the algorithm in a
given number of runs will mean that the algorithm is
more robust and is less likely to run into failures. As
can be seen in Figure 7, RRT* algorithm yields better
results in both of these metric categories. After
realizing these results, it was determine that RRT* is
the better algorithm and was used for further testing in
navigating the Thunderhill mapped track through
simulations.

Further visualizations and the integration process of
such visualizations using RRT* algorithm will be
discussed further in the following results section.

RRT* A*

Average completion time in
seconds (s)

143.707 215.229

of node connection failures
in 10 runs

1 2

Figure 7: Metrics for algorithm performance

In this report, our group’s main objective is to test
different path planning algorithms that would be
efficient for racing in different environments. To fully
incorporate this idea, we must be able to visualize what
path the vehicle is currently taking, and determine what
algorithm is best suited for each different racetrack. In
order to make these kinds of decisions, we need to
implement a user-oriented interface, that will allow the
user to monitor the efficient paths that these different
algorithms generate via visualization, and allow the
user to control the robot through this interface.

To bring this theoretical process into action, we
implemented an interactive interface using Rosbridge
[8], which is a package that provides a JSON API that
will implement ROS functionalities to programs
(web-browser) that does not normally process
ROS-related programs. Using HTML [9] and Javascript
[10], we will create a web-browser that will connect to
the Rosbridge servers to allow interactive usage for
users, depicted in Figure 8. This interactive interface
can subscribe to rostopics that will take input data from
the robot’s different sensors, as well as allow the user to
input specific destination coordinates to start
autonomous navigation using the different path
planning algorithms. The interface will also include the
python visualized navigation algorithms that will show
the calculated path plans in real-time on the webpage.
The web-browser will allow the user to monitor the
vehicle’s status, similar to the dashboard of a car.

Figure 8: Interactive interface using Rosbridge

III. Results
Building an interactive interface is crucial, because it
allows the user to monitor the vehicle’s current path as
well as sensory information that will be useful for
determining if the autonomous navigation algorithm
chosen is efficiently transporting the robot from one
location to another. As mentioned previously in the
methods section, our group implemented RViz, which
was able to visualize the vehicle autonomously
navigating with the help of the 2-D grid map created
from G-Mapping and the path planning algorithms such
as A* and RRT*.

Although RViz is visually appealing and shows the
local and global planners that allow the user to view
what the robot’s current path is using the path planning
algorithms, it lacks support in visualizing sensory
information such as the vehicle’s current position,
speed, odometry, IMU, and even battery life. Also,
RViz may be difficult for users to navigate around,
because it requires understanding certain rostopics to
view certain data such as images from the Realsense
depth camera. The user would have to add different
rostopics with several clicks inside RViz, which may
cause confusion.

In order to allow the user to effortlessly understand
what path planning algorithms are being utilized and
also be able to view different sensory information that

the autonomous vehicle is outputting, the interactive
interface using Rosbridge was created. The interactive
interface implemented will also allow the user to move
the vehicle from its initial position to the final
destination by pressing the “Submit” button, as long as
the user knows the final position coordinates. In case
the user does not know the final position coordinates,
the interface will provide the track’s finish line
coordinates, which the user can obtain by pressing
“Preset Value” that is installed in the interface to
autonomously navigate the vehicle. A demonstration of
the Interactive interface can be found in the hyperlinks
below:

Interactive Interface (Preset Value)

Interactive Interface (Input Value)

Our group was able to utilize ROS node commands
such as rostopic echo and rostopic info to understand
how different navigation sensors could be displayed in
the interface, depicted in Figure 9. For example, we
used the above commands to understand that the
/move_base/goal topic generated from the autonomous
path planning algorithms could directly move the
vehicle from its initial position to the final position.
Using HTML and Javascript, our group was able to
create the interface without the user having to search
through ROS nodes to receive sensory information
outputted by the vehicle. By creating a web-browser
that allows the user to control and view the robot in
real-time, the user will understand how the vehicle is
thinking, and if the path planning algorithm selected is
efficient in the different race track characteristics.

Figure 9: Rostopic info and echo demonstration

https://youtu.be/nUsRP3SFIew
https://youtu.be/GzUygh2_3e4

As mentioned previously in the methods section, RRT*
algorithm was determined to be the better navigation
algorithm for finding the most efficient path given the
start and end points on a binary grayscale image. It
must also be noted that previously RRT* was tested on
a binary masked grayscale image that resembled the
makeup of a maze. Nevertheless, the main application
in which RRT* is being applied to is a race. The
specific race being catered to is an autonomous
navigation race at the Thunderhill track. Therefore, our
tuned RRT* algorithm must be tested against track like
settings, and once deemed satisfactory, the RRT*
algorithm will be tested against a masked grayscale
image of the real two mile Thunderhill track [11].

A test_track.PNG is generated, which can be seen in the
outline in Figure 9. This track illustrates more
curvatures and changes in outline that is different from
that of Figure 4. These changes in a mapping setting
would represent different challenges for the search and
navigation algorithm as it would have to find the most
optimal path. In Figure 9, it can be seen that the RRT*
algorithm has found its most optimal path from one
designated point to the other.

Although the blue line representing the best path may
seem jagged and seem to run off course, the line is the
best possible path because of potential delay of
computing power associated with the necessary
calculations to find the best path. It also occurs that the
node creation process branches out to find the best
direction, and coincidentally, the path seems to be
jagged. This RRT* algorithm also runs relatively fast
and as a result of the node branching out process, the
jagged behavior in the path creation occurs. It should be
noted that that if RRT* runs through longer iterations,
the path will curve out to be more smooth and less
jagged behavior will be seen. Nevertheless, the path
outputted is still the best path for RRT* to navigate
from the start point to the end point.

Figure 9: Python visualization of RRT* algorithm on
“test_track.PNG”

After confirming that RRT* works on a map-like binary
grayscale setting, the base image for the Thunderhill
track was created from the Thunderhill track website.
As seen in Figure 10, the image represents the basic
layout of the two mile Thunderhill track. This image or
figure may also be referred to as
“thunderhill_cropped.PNG”. As previously mentioned,
the track data was taken from the Thunderhill website
and converted into a binary masked grayscale image,
which is the output seen in Figure 10. In this respective
figure, the starting line had also been masked and can
be seen as a black bar on the track on the top center-left
corner of the image. After this masked grayscale image
of the Thunderhill track is successfully created, the
RRT* algorithm can be applied to this masked
environment.

Figure 10: Binary masked grayscale image of the two
mile Thunderhill track (“thunderhill_cropped.PNG”)

In Figure 11, the entire Python bird’s eye point of view
visualization of the RRT* algorithm on the
“thunderhill_cropped.PNG” is visualized. Similar to
previous figures, the red dots refer to the nodes of the
tree branches that traverse from the original node
(starting point) to the destination node (end point). The
green lines refer to the connections between nodes, and
the blue line represents the final best path that connects
the original node to the destination node. This line
ultimately represents the path that the autonomous
vehicle will follow on the Thunderhill track.

Figure 11: Python visualization of RRT* algorithm on
“thunderhill_cropped.PNG”.

A demonstration of the python visualizer can be found
in the hyperlink below:

Python Visualizer

This RRT* visualization is intended to merge with the
interactive interface. As a result, the visualizations that
are outputted will serve as a useful tool for the user to
identify how the autonomous vehicle is deciding its
path and how it eventually navigates. Watching the
node creations will inform the user of the thought
process of the navigation, and thus inform the user how
the car will behave. Following the blue line will allow
the user to visualize and understand how the car moves
and decide if the path currently navigating is correct
according to human intuitions. By producing a real-time
image of how the algorithm is creating the most
efficient pathway, it allows the user to better understand
the entire autonomous navigation behavior process.

The significance of these visualizations and the
interface is that the user will be able to monitor the
autonomous vehicle and make decisions accordingly.
Racing performance and debugging capabilities can be
significantly enhanced as a result. For instance, if RRT*
algorithm seems to be outputting abnormal pathing, the
users monitoring the interface could have control and
change the navigation algorithm to another navigation
algorithm such as A* in the hopes of improving path
planning and obstacle avoidance.

IV. Discussion
The main objective of this report is to show the
progress that is being made to eventually allow our
domain to autonomously race in different events such
as F1Tenth [12] and Thuderhill. In order to successfully
compete against different participants, our group’s main
goal is determine the most efficient algorithm for racing
in these different tracks. By using our interactive
interface, the user will be able to view path planning
algorithm behavior as well as real-time sensory
information outputted by the vehicle during navigation.

Currently, the interactive interface shows sensory
information from the TurtleBot spawned inside the
Gazebo simulation. These include the vehicle’s current
speed, position and RGB image. The interface is also
subscribed to the /move_base_simple/goal ROS node
that is generated from the path planning algorithms that
help the vehicle to navigate autonomously. By clicking
a single button, the user will be able to navigate the
vehicle to the intended destination. In addition to all
these features, the interface also displays the current
path planning algorithm generating the most efficient
path given a specific racetrack.

Future improvements to the interactive interface
currently include optimizing visualizations to be more
clear, subscribe to more nodes to receive more input
data, and test potential latency with larger datasets or
streams of data. Currently, several plots and tools on the
interactive interface contain data that is self generated
on a small scale, often referred to as ‘dummy data’.
Future ambitions include implementing the interface
with more advanced datasets and streams of live input
data.

https://youtu.be/wuAvyCGEBFU

V. Conclusion
In this report, our group successfully integrated
navigation hardware into the TurtleBot that directly
reflects the real-life robots built, as well as
implemented the UCSD racing track inside the Gazebo
simulator that mirrors the real-life track. G-Mapping
was correctly implemented to create a 2-D grid map
that was the basis for implementing path planning
algorithms in the Gazebo Simulator such as A* and
RRT*. The performance of these algorithms were tested
based on different metrics, and these algorithms were
able to visualize their performance on real map images
of the real-life racetracks that have been postponed due
to the on-going pandemic. Our main objective was to
implement an interactive interface that will allow the
user to control the vehicle and view significant sensory
information obtained from the vehicle during
autonomous navigation, and this was achieved by
displaying different real-time sensory data, creating a
platform for the user to monitor the path planning
algorithms, and thus allowing the user to autonomously
navigate the vehicle with ease.

VI. References
[1] Gazebo Simulator

http://gazebosim.org/tutorials?tut=ros_overview

[2] TurtleBot Robots
http://wiki.ros.org/Robots/TurtleBot

[4] UCSD Racing Track
http://github.com/garrettgibo/ucsd_f1tenth_simulator

[4] G-Mapping
http://wiki.ros.org/gmapping

[5] RViz
http://wiki.ros.org/rviz

[6] Python
https://www.python.org/

[7] CV2
https://pypi.org/project/opencv-python/

[8] Rosbridge
http://wiki.ros.org/rosbridge_suite

[9] HTML
https://html.spec.whatwg.org/

[10] Javascript
https://www.javascript.com/

[11] Thunderhill Racing Track
http://selfracingcars.com/

[12] F1Tenth Racing Track
https://f1tenth.org/

[13] Web Video Server
http://wiki.ros.org/web_video_server

[14] Adaptive Monte Carlo Localization (AMCL)
http://wiki.ros.org/amcl

[15] A. A. Zhilenkov and I. R. Epifantsev. "Problems of
a trajectory planning in autonomous navigation
systems based on technical vision and AI." 2018,
https://ieeexplore.ieee.org/abstract/document/8317
265

[16] Motion Planning for Urban Driving using RRT,
http://acl.mit.edu/papers/KuwataIROS08.pdf

[17] D. Ma and N. Zhou. “Web-Based Robot Control
and Monitoring.” 2019,
http://www.cs.binghamton.edu/~szhang/teaching/1
8spring/reports/Luo-Ma-Zhou.pdf

[18] Calisi, Daniele and Nardi, Daniele. “Performance
evaluation of pure-motion tasks for mobile robots
with respect to world models.” 2009,
https://www.researchgate.net/publication/2007446
24_Performance_evaluation_of_pure-motion_task
s_for_mob
ile_robots_with_respect_to_world_models

http://gazebosim.org/tutorials?tut=ros_overview
http://wiki.ros.org/Robots/TurtleBot
http://github.com/garrettgibo/ucsd_f1tenth_simulator
http://wiki.ros.org/gmapping
http://wiki.ros.org/rviz
https://www.python.org/
https://pypi.org/project/opencv-python/
http://wiki.ros.org/rosbridge_suite
https://html.spec.whatwg.org/
https://www.javascript.com/
http://selfracingcars.com/
https://f1tenth.org/
http://wiki.ros.org/web_video_server
http://wiki.ros.org/amcl
https://ieeexplore.ieee.org/abstract/document/8317265
https://ieeexplore.ieee.org/abstract/document/8317265
http://acl.mit.edu/papers/KuwataIROS08.pdf
http://www.cs.binghamton.edu/~szhang/teaching/18spring/reports/Luo-Ma-Zhou.pdf
http://www.cs.binghamton.edu/~szhang/teaching/18spring/reports/Luo-Ma-Zhou.pdf
https://www.researchgate.net/publication/200744624_P
https://www.researchgate.net/publication/200744624_P
https://www.researchgate.net/publication/200744624_P
https://www.researchgate.net/publication/200744624_P

