
DSC 180B Final Report

Pranav Deshmane, Sally Poon

February 5, 2021

When building systems for autonomous vehicle racing and driving, it is critical for
the robot to localize itself within the environment it is navigating. Robot localization
comprises of the robot being able to derive its current path and its heading for future
motion estimation. Popular approaches often involve using GPS data solely and com-
puter vision sensing. However, relying heavily on GPS coordinates or LiDar in open
outdoor environments can lead to several issues. GPS is prone to lag and may be infea-
sible in harsher and unfamiliar terrain, resulting in loss of accuracy in tracking by failing
to produce necessary positional information. Computer Vision approaches often depend
heavily on training data and cannot always provide continouos and accurate orientation.
Our problem investigates using IMU and Odometry sensors to aid in this mission by
providing relevant data, position estimates, and vehicle heading in cases when GPS and
other mapping are not reliable, or to supplement these approaches. IMU (Inertial Mea-
surement Unit) provides linear acceleration, angular velocity, and magnetic force sensing
ability through the use of accelorometers, gyroscopes, and occasionally magnetometers.
Wheel Odometry also provide useful measurements to estimate the position of the car
through the use of the wheel’s circumference and rotations per second. Together, these
sensors provide relevant and invaluable data that can be fused to obtain a primary head-
ing and position estimate for the robot. Furthermore, these sensors can be fused with
navigation and obstacle avoidance systems already in place to build more robust and
accurate autonomous navigation models [4].

1 Goals/Purpose

We aim to achieve the following through our work:

• Understanding of IMU and Odometry Sensor to help with reliable navigation and
place within robot ecosystem.

• Guides for OLA Artemis IMU setup + calibration and Odometry tuning/analysis

• Calibration procedure and Analysis of IMU sensor to ensure reliable measurements

• Tuning procedure of and Analysis Odometry to ensure accurate measurements

• Odometry derived Position Estimate

• IMU derived Primary Heading Estimate using fusion of accelerometer, gyroscope,
and magnetometer readings

• IMU and Odometry data ready to be easily ingested by other subteams through
ROS using package standard and custom topics

• IMU and Odometry data ready for fusion with GPS subteam within Kalman Filter
if necessary for future advancement of robot localization

• Noise Reduction Strategies

• Integrating Oak camera to our robot

1



2 Odometry

2.1 Introduction

Odometry is the use of motion sensors to estimate change over time [1]. To do this,
odometry requires the time, rotation per minute and steering angle. After this, we can
calculate odometry by doing:

Position = OldPosition + V elocity ∗ Time + 1/2 ∗Acceleration ∗ Time2 (1)

Using this equation, the robot car can predict where it’s location respective to it’s
last position. The goal of odometry is to get a estimate of where the robot has driven
to respect to its starting point. This can be problematic alone as over time it may
accumulate errors since it is an estimate of the car’s position [6].

2.2 Data Gathering

For odometry, the baseline framework we used was F110th Ackermann Steering [5].
When using this framework, we gathered data from our robot car and cleaned it so we
only got time, estimated x and estimated y. Using these predicted positions, we were
able to localize the robot and see what was its pathing.

2.3 Calibrating Odometry

To increase the accuracy of our odometry readings, tuning has to be done on the
VESC.yaml file to account both the steering and angle gain used in our equations. The
equations being used are:

erpm (electrical rpm) = speed to erpm gain * speed (meters / second) + speed to
erpm offset

servo value (0 to 1) = steering angle to servo gain * steering angle (radians) + steering
angle to servo offset

2.3.1 ERPM Calibration

For the ERPM, we tried to find the best value for speed to erpm gain, which was only
obtainable by constantly tuning and testing the value. To do this tuning, we took a tape
measure and extended it by around two feet, put our car’s back wheels at zero meters
and drive straight. After driving straight, we can grab the distance by doing rostopic
echo /vesc/odom/pose/pose/position/x. After this, if we got a distance that overshot,

2



we decreased the speed to ERPM gain and if it undershot, we would increase the speed
to ERPM gain. After testing the values of 4412, 4912, 5412, 3912, 3412, and 4012, we
found that 4112 was the most accurate value with around a 0.0007 error from the actual
position versus a 0.480117 ,0.118568, -0.178206, -042677, and -0.619709 error.

Figure 1: end result

Figure 2: start Figure 3: mid

Figure 4: start Figure 5: mid

3



Figure 6: start Figure 7: mid

2.3.2 MushR Steering Angle Calibration

For this part, we followed a guide from MushR [10].To test the steering angle to servo
gain, we had to also have a tape measure and see the best value by running the car over
and over. We had a tape measure go out to around 2.5m, then had set the back wheels
to the beginning of the tape measure in a direction that makes it a T shape. To calculate
what we needed as our arc, we needed to do

2 ∗R = L/2sin(beta) (2)

and
beta = arctan(1/2 ∗ tan(delta)) (3)

given that our cars length is 0.475 and the maximum steering is 0.34. This ends
up being around 2.44m. To do this test, we had to change the steering to erpm gain
variable. The values had to be negative because if we set a positive steering to erpm
gain, it would invert the turn. During our first tuning, we tried to do 0 however, we
learned that if we set zero, it would not turn at all. During the test, our original value
was 0.67 however we had to retune. This was because even though during our test it hit
2.44m, we realized that when graphing it with a constant speed, it would never hit that
amount. Because of this, we decided to make our our tuning test.

Figure 8: start Figure 9: mid

4



Figure 10: end result

2.3.3 Improved Steering Angle Calibration

After finding that the MushR tuning test was not accurate for our needs, we decided
to make our own test that uses our maximum distance value of 1.8m. For this test, we
would turn the car each time and see how close it plots to 1.8m. To do this, we tried a
steering to erpm gain of -0.5, which made over a full circle when we only did a half circle,
showing that it was too much of a steering angle. After this, we through to increase
the steering angle to -0.7 which preformed a little better but still made a full circle. We
tried increasing it again to 0.8 servo to erpm gain to see how the change affects the circle
because at the time, we did not know what caused it to run a full circle when we only
ran a half circle. Our final try before researching more was 0.9 servo to erpm gain. Our
final try before researching more was 0.9 servo to erpm gain.

After seeing that it was not giving the right predicted values, we decided to look into
the file that predicts the odometry values. By going into the vesc to odom topic, we
were able to find that the equation to calculate the odometry value is:
(data - steering to servo offset ) / steering to servo gain current angular velocity =
currentspeed * tan(current steering angle) / wheelbase

5



After reading the equation and testing values, we realized that the steering to servo
gain directly changes the odometry prediction we would get. This means that if we
increased the gain, it would start predicting a larger value and if we decreased the gain
it would decrease the predicted value. Knowing this, we started changing our values
again to try to perfect our odometry prediction.

For our second batch of tests, we tried starting with a -1.0 steering to erpm gain.
When we did this we saw that it was close to half a circle however we wanted to ensure
that by changing this servo to erpm gain to over -1, we would be getting closer to our
intended half circle. Next, we tried a more extreme value of -10 and saw it only did
a small arc, proving that by decreasing the servo to erpm gain we were decreasing the
predicted arc value. Since we have proven the extremes of the erpm to servo gain values,
we started honing into the right servo to erpm gain value. We tried -1.5 next however
it still made too small of an arc. After this, we went changed the value to an erpm to
servo gain of -1.2 which was very close however just shy of the amount we wanted the
arc to be. The final value we tested was -1.1, which after testing gave an arc with only
a 0.05m error.

Figure 11:

6



Figure 12:

2.4 Odometry Discussion/Results

The biggest issue we started with is that there was a problem with the directories of how
we set our vesc file. During that time, we set the erpm to servo gain however it never
changed the value when checking the erpm to servo gain parameter. To fix this issue,
we had to go into forums such as the F110th and Mushr Slack and forums and ask for
assistance. After discussing with them further, we found that how we set our directories
was incorrect and it was not reading the vesc.yaml properly. We fixed how the VESC
was reading the vesc.yaml and after that, we were able to test the erpm to servo gain.

Our first issue we started encountered was doing the steering angle tuning test and
completing a 2.44m turn with a -0.67 servo to erpm gain gain. We considered this to be
our final value and to validate, we started recording the predicted x and y values and
graphing them to see if our tuning test was accurate. However, when we graphed the
robot’s pathing using the ERPM gain, we found that the odometry values overpredicted
by double, showing a full circle pathing when we only drove half a circle. Because of
this, we tried doing other values similar to out however we saw the same result mostly,
showing that it drove half a circle. To try to understand this issue better, we went
directly into the VESC node and looked at the equation used to calculate the odometry
values and we found that based on the servo to erpm gain, if you decrease it even more,
it will predict a smaller value, giving us a smaller arc.

Because of this, we had to retune the steering angle however since we made previous
human errors, we used a constant speed of 1m/s rather than an unbounded speed. The
problem however was that since our speed was bounded at 1m/s, we would never hit
2.44ms turning so we decided to tweak the test and make our own. For this new test,
we wanted to make it so the distance we are trying to predict is 1.8m instead of using
the kinematic model equation and tune based on that value. After this, we had to retest
multiple new values such as -1.0 and -10 to prove our theory of the arc and half circle
increasing and decreasing based on the servo to erpm gain. After proving our theory
through testing, we decided to start honing in on the most accurate servo to erpm gain.
Next we tried -1.5 which under predicted and then -1.2 which was only -0.1 off. Our
final value was -1.1 with a -0.05 error.

3 Artemis IMU

3.1 Introduction

IMU or Inertial Measurement Unit allows for the sensing of acceleration, angular velocity,
and magnetic fields in all X,Y,Z axes. This is accomplished through acceloremeter,
gyroscope, and magnetometer sensors built in within the IMU. Using these measurements
Roll, Pitch, Yaw can be derived by a combination approach of all 3 sensors onboard the
IMU, which allows us to gain an understanding of the robot’s relative position. This

7



is accomplished through its acceleration and angular velocity measurements, and its
relative orientation by the yaw compass heading. Thus, it will be important to calibrate
and thoroughly verify our IMU produces accurate readings and derived estimates [2].

Initially, due to our previous tests and seamless integration, we had decided to utilize
the Sparkfun 9DoF Razor IMU for the robot. However, the Razor became an obsolete
model and was no longer available to purchase. So, starting in January 2021 we decided
to switch to using the Sparkfun OpenLog Artemis IMU (Dev-16832)[9], the most recent
IMU from Sparkfun lineup. This IMU boasted an enhanced sensing capabilities and
a simple plug and play system, but this was not the case initially. Driver installation
problems with Linux, Arduino IDE issues, and extremely difficult to find ROS package
were a few obstacles faced when interfacing with this specific IMU. While the Razor
had a strong community supported ROS package, the Artemis did not. After a lot
of digging and contacting those in the field, we were able to contact Fabrice Le Bars,
who is an Assistant professor in the Robotics Topic Group at ENSTA Bretagne, Lab-
STICC/CID/PRASYS. Through his help, we discovered his personally written ROS
package, where he recently added support for the Artemis IMU. We also went through
the a tedious back and forth process in debugging his personal visual library that was
necessary to visualize the heading derived by the IMU. We then helped to point out
bugs and recommendations for his official github repository to better the experience for
future users. The installation and setup guide we have written is attached to this report
and can also help future members of this capstone, Triton AI, and Artemis IMU users
in this process. Thus, we were successfully able to calibrate and acquire the heading of
the IMU which can aid in the navigation and localization of the robot. Thankfully, we
were still able to attend in person lab during the COVID pandemic and have contact
with the robot, which was crucial for debugging many of these steps.

It is also imperative to determine the placement and design of the IMU mount for
both 1/10 and 1/5 car. Further analysis on basic mounts is included below. To design
this mount we must take into account the magnetic distortions previously discussed and
security of the mount itself. Then, we must find a suitable location on the car that is
safe and ideally furthest from the most magnetized metals of the car. We also had major
issues when trying to replicate integration steps directly on the JNX. This struggles
came from the Arduino IDE unable to properly handle arm64 architecture tools needed
to flash the AHRS software to the Artemis IMU. Ideally we can have all installation steps
done using the JNX. Currently we are using external machine (best case running Ubuntu
20.04) to flash the software and calibrate the IMU, per the recommendation of Dusty
Franklin from Nvidia and various Arduino and Jetson forums. To further mitigate the
noise of the IMU, calibration procedure should be done even with the slightest changes
in IMU positioning and robot modifications.

3.2 Calibration

Calibrating the Artemis IMU had to completed methodically and with care to establish
reliability of its measurements. This process was similar to the Razor IMU we had worked
with before, so we knew where to avoid common pitfalls. To calibrate the Artemis IMU,
we made sure to follow a defined procedure by the Fabrice Le Bars ROS package [3][4].
This allowed us to configure a calibration file to calculate the final offsets and calibration
parameters and easily integrate with our IMU with ROS. For the calibration of the linear
acceleration in the x,y,z axes the Artemis IMU, we needed to obtain the maximum and
minimum acceptable values of each axis by pointing the IMU upwards and downwards
in each axis to a position expected when the IMU was to be mounted on the robot. It
was imperative to reset the measurement if there were mishaps as the sensor proved to
be quite sensitive, which could greatly affect the readings in future. To calibrate the
gyroscope, the IMU was kept still on a flat surface for 10-15 seconds to account for
the noise at rest. Calibrating the magnetometer proved to be trickier to handle due to

8



external magnetic influences in our workspace. The magnetometer can be influenced by
”Hard” and ”Soft” iron offsets which can distort the magnetic forces around the IMU. We
experienced a hard iron offset initially which can be seen in the figure below. However,
after clearing the workspace of large metal objects and potentially magnetized metals,
we were able to achieve satisfactory calibration.

Figure 13: ”Hard” Iron Offset

In order to test whether the reliability of the measurements, we devised to collect
data under the following set of conditions (which followed in the Heading validation as
well). The IMU was kept flat in the x, y plane and rotated about the z axis 3 times in
30 seconds. 500 data points were collected during this process. Under these conditions
we expect the linear acceleration in the x and y axis to be negligible (around 0). The
acceleration in the z axis will be around 9.8m/s2 due to force of gravity, but will be
removed from further consideration because our vehicle will be traveling in the x,y plane
on the ground.

Figure 14:
Figure 15:

Examining the the x-acceleration values from the test over time reveals that they
are fairly noisy with many fluctuations, but this is expected from the accelerometer.
Additionally, they lie close to 0 with a max of 0.998 , min of 0.095 , and variance
of 0.034. The distribution plot also confirm that the values hover near 0 and do not
vary greatly. These findings satisfies our expectations and indicates that the calibration
process was successful in the linear x-axis acceleration.

9



Figure 16: Figure 17:

The y-acceleration values exhibit similar properties to the x-acceleration values. The
readings over time remain near 0 for the entire duration of the trial. The values are
noisier than the x-acceleration, but not to an alarming level. The distribution of the y-
acceleration demonstrates values that are mainly centered around 0 with a few negative
outliers. Overall, both the X and Y acceleration values indicate positive results that the
calibration for the linear acceleration was successful and provides reliable readings.

3.3 Initial Heading within ROS

Deriving the heading of the robot is critical in our robot’s navigation system, especially in
environments when GPS localization may be error prone and unreliable. The IMU sensor
is cornerstone for obtaining the heading of our autonomous vehicle as its measurements
allow for greatest accuracy in finding orientation. The following equations define the
derivation for the Roll, Pitch, and Yaw. Yaw is the most important in providing us with
a heading.

pitch = 180 ∗ atan2(accelX, sqrt(accelY ∗ accelY + accelZ ∗ accelZ))/PI (4)

roll = 180 ∗ atan2(accelY, sqrt(accelX ∗ accelX + accelZ ∗ accelZ))/PI; (5)

magx = magReadX∗cos(pitch)+magReadY ∗sin(roll)∗sin(pitch)+magReadZ∗cos(roll)∗sin(pitch)
(6)

magy = magReadY ∗ cos(roll) −magReadZ ∗ sin(roll) (7)

yaw = 180 ∗ atan2(−magy,magx)/MP I; (8)

The benefit of the using the Artemis ROS package is the inclusion of the Attitude
Heading Reference System that is at the core of library. This allows us to derive ori-
entation for the robot using the acceleration, gyroscope, and magnetometer readings in
unison. This is unique compared to other firmwares and orientation systems that lack
in ability to correct heading estimations using the compass (magnetometer) readings.
The orientation is given in quaternions, which are four dimensional [x,w,y,z] coordinates,
defining a vector and rotational transformation. The heading we aim to use for the robot

10



is the Yaw, or rotation about the z-axis (measured in degrees). Thus it is important to
convert the quaternion values to Yaw. Fortunately, ROS provides a method for convert-
ing within its transformations library (tf.euler from quaternion). We have also written a
custom publisher for the yaw value to make this data easily accessible to potential con-
sumers and publishes on the /yaw topic. The yaw data analyzed was collected from our
custom publisher. Continuing under the previously noted conditions to test reliability of
measurements (x, y plane constant and 3 rotation about z-axis in 30 second time-frame),
we can determine whether our heading reading is reliable and accurate.

Figure 18: accel+gyro Figure 19: accel+gyro+mag

Examining the Yaw readings over the full 30 second duration shows promising results.
There are three peaks at 180 degrees and three corresponding troughs at -180 degrees.
The sharp jumps are due to the degree system used to measure Yaw, which goes from
0 to 180 degrees, and then from -180 degrees back to 0 (where North is indicated at
90 degrees). This is exactly what we hoped to expect as these values match exactly to
the three full rotations we completed about the z-axis. The Yaw heading captured this
activity accurately and robustly!

We then added an additional test under the same conditions, but instead of 3 rotations
about the z-axis, we did 2 rotations clockwise, paused, and then 2 rotations counter-
clockwise. As the above plot shows, this activity is accurately captured as well as there
are two peaks and falls (at 180 and -180 degrees), a plateau corresponding to the pause,
and then two peaks and falls rising and falling in the opposite direction (at -180 and 180
degrees). This further proves the ability of our heading estimation!

In summary to obtain the heading (Yaw), users can first extract quaternions from
geometry msgs/Quaternion from sensor msgs/Imu published by the /imu topic, and then
convert to Yaw. Or they can directly acquire the Yaw heading by subscribing to our
custom written /yaw topic. Furthermore, our heading estimation is reliable, accurate,
and ready to be used in our robot localization and navigation system.

Figure 20: custom /yaw topic

4 ROS JNX Integration Workaround

To ease the process of setting up the IMU to our Jetson NX, we had hoped to have all
modules and installation completely functional on the Jetson itself. The AHRS software

11



that is integral to the OLA Artemis working must be flashed through the Arduino IDE.
This is because it is written in an Arduino file format. However downloading the Arduino
IDE, necessary board definitions, and build tools on the Jetson’s ARM64-architecture
proved to be difficult. We first tried to circumvent the usual approach in downloading
the Arduino IDE itself and utilized the specific download from Jetson Hacks. While we
were able to establish a connection to the IMU through this Arduino IDE installation,
we were not able to successfully install the necessary build tools and Sparkfun Redboard
Artemis board definition. After searching on many Arduino and Jetson forums, we
were eventually able to install the required board definition by the help at the following
link: https://github.com/sparkfun/ArduinoBoards/pull/62. By including the specified
toolchain in the build json file, we were able to successfully compile the sketch. However,
we were not able to successfully upload the software to the IMU and are still looking
into how to fix this error. Our current workaround is to first flash the AHRS software to
the OLA Artemis IMU using an external machine (tested running Ubuntu 20.04). This
allowed us to successfully upload the appropriate software and establish ROS connection
to the IMU. The ultimate result is that the software must be flashed from an external
machine and therefore, the calibration must also be done while connected to an external
machine. As long as the IMU is as close as possible to its mounted position or running
environment, this process has not yielded any major errors in our verification analysis of
heading. The guide developed in installing and setting up the OLA Artemis IMU with
ROS covers this process further.

5 Heading Real Environment Analysis

Integrating the IMU to the 1/10 car allowed us to verify and adjust our calibration
and helped us discover new insights regarding Yaw Heading error in a real environ-
ment. When setting up our experiment, we utilized re-calibrated settings in the new
environment based on our previous best accelerometer, gyroscope, and magnetometer
Yaw calibration parameters. We then tested these under the following situations and
conditions we controlled during our Odometry positioning tests on the robot.

5.1 Straight Line Heading Test

We first tested the reliability of the heading in the following case, by driving the robot
strictly straight 2 meters at 90 degrees (West) for 10 seconds. The IMU was mounted
flat, traveling only in the x,y plane. By testing three different parameter settings for
calibration, we were able to determine the most accurate heading performance. The
three calibrations consisted of: accelerometer + gyroscope calibration, accelerometer
+ gyroscope + mangetometer calibration, and accelerometer + gyroscope + extended
magnetometer (for better handling iron offsets) calibration. The specific calibration
parameters per each setting are available in the attached documents. After converting
the orientation quaternions to Yaw (degrees) as before within ROS, we were able to
analyze the heading in a real time setting under the three described conditions.

12



Figure 21: accel+gyro Figure 22: accel+gyro+mag

Figure 23: accel+gyro+extended mag

Analyzing the Yaw readings against each other from all three test calibration condi-
tions over the the full 10 second interval of strictly driving 90 degrees (West) revealed
interesting findings. For comparison, readings (blue) were placed against a theoretical
”perfect” heading of 90 degrees (red) throughout the 10 interval.

The accelerometer and gyroscope calibration condition produced the highest average
error, 90.98, in the straight line yaw test overall. It also had the most striking behavior
as the result of the drift apparent in the readings. This can be seen as the values slowly
decrease from 85 degrees to 70 degrees in only 10 seconds, and in the high variance. Since
the car traveled on a strict straight path, this can be attributed magnetic forces present
in the real time integration that drew influences from the nearby motors, processors, and
hardware.

The accelerometer, gyroscope, and magnetometer calibration condition performed
the second best in this test with an average error 19.29. Here, the drift apparent in
the previous readings was minimized, which can be seen as the readings are fairly stable
throughout the 10 seconds with a mean of 70.34 degrees and a low variance. The error was
primarily due to a consistent offset which was most likely produced by a hard iron offset
present in the environment that was not accounted for by the standard magnetometer
calibration.

13



Finally, the accelerometer, gyroscope, and extended magnetometer calibration con-
dition performed the best with minimal average error of 0.14. This was expected as this
wholly utilizes the calibration capabilities available to us. The average of the readings
was 90.56 degrees and the behavior stable throughout the 10 second interval. This gives
us confidence that we are able to account for the hard iron offsets and stronger mag-
netic influences produced by the motors, processor, and other hardware in our real time
environment using the extended magnetometer calibration technique.

5.2 Half Arc Heading Test

Next, we tested the reliability of the heading in the following case, by driving the robot
in a 180 degree arc at a constant speed and turning angle for 10 seconds. The IMU was
mounted flat in the x,y plan akin to the ”second” mounting procedure in the Mounting
section. The same three sets of calibration conditions were utilized from the previous
straight line test. After converting the quaternion values through ROS, we were able to
analyze the heading.

Figure 24: accel+gyro Figure 25: accel+gyro+mag

Figure 26: accel+gyro+extended mag

Examining the Yaw readings against all three calibration values in the Half Arc Test
revealed to us insights into our calibration performance during turning. For comparison
the robot was driven 180 degree half arc turn (West to East, 90 to 270 degrees) in 10
seconds at a constant speed and turning angle.

14



Similar to the straight line test, the accel+gyro calibration performed the poorest
and allowed for largest variance in the readings, with an error 94.89 when compared to
a theoretical increase from 90 to 270 degrees in 10 seconds. There is also random noise
and drift that begins to occur towards the end of the test and the heading never crosses
170 degrees, even though the robot ends its test at 270 degrees. This demonstrates that
the magnetometer calibration is crucial.

The accel+gyro+mag calibration condition performed the next best in the Half Arc
Test with an error of 42.5 when compared to a theoretical increase from 90 to 270
degrees. There was less drift and noise in the readings which can be accounted by the
magnetometer calibration. However, the readings indicate that the heading readings
overshot the actual half arc by about 180 degrees and settled around 350 degrees. This
is unacceptable level of error to utilize this calibration condition in our integration.

Lastly, the accel+gyro+extended magnetometer calibration performed the best with
an error 15.07 when compared to a theoretical increase from 90 to 270 degrees in 10
seconds. The heading was also tracked in a smooth fashion with less noise and drift than
the previous conditions. This was what we had hoped for and demonstrated how the
magnetic presence has a strong effect when not calibrated for using the full capabilities of
the calibration procedure. The extended magnetometer calibration technique allows us
to confidently handle the noise and magnetic distortions with a reliable mounting setup.
It is cornerstone to note that the noise is heavily dependent on the mounting position.
We used the second mounting setup described in the following section for these tests,
yet the noise can further be mitigated with an advanced mounting setup.

6 IMU Mounting and Analysis

The mount and mounting procedure to be used for the IMU is crucial in achieving the
highest accuracy readings from the IMU. Insecure or unstable mounting positions can
cause uneven external pressures to be applied to the IMU board. This can cause large
errors in the IMU readings as it is extremely sensitive to even slight fluctuations in its
placed environment. The propagation of these errors can greatly deviate or ruin the
derived heading and position estimates. The initial mount we attempted to use was a
temporary fix but revealed to us the severity of the errors that can directly be produced
by insufficient mounting procedure. We naively used a ziptie and double sided electrical
tape as our first mount to simply test movement with the IMU onboard the robot.

Figure 27: Simple Mount

15



Figure 28: Simple Mount Lin. Accel Figure 29: Simple Mount Yaw

This caused the following drift and error in the linear acceleration and the Yaw
heading readings. This can be seen in the average -1.24 m/s2 bias in the linear x
acceleration and the small bias present in the y acceleration. The large variation at the
ending of was due to IMU shifting during the run due to this mount being not secure
enough. The Yaw heading readings slowly began to increase and drift over time in this
mounting position as is apparent in the first up until 30 seconds. This was most likely
due to the constant applied pressure and tilt being applied to the Artemis IMU in this
mounting position. The shifting during the drive caused a massive change in the Yaw
heading and demonstrated how strongly the secureness of the mount can change the
readings. Overall, this mounting position was not secure, allowing the IMU to move and
sway as the robot traveled its course, corrupting the measurements.

Figure 30: Second Mount

Figure 31: Second Mount

16



Figure 32: Second Mount Lin. Accel
Figure 33: Second Mount Yaw

Next, we more securely fastened the IMU to the Jetson NX mount through its upper
right mounting hole. This placement was not the ideal case, however it.allowed us to get
more stable data readings that we used during our calibration process. In this position,
the IMU was securely kept in the x, y plane. This removed the previous large bias we
witnessed in the linear y acceleration. There is still small bias however, but it is less than
0.8 in both acceleration axes, which is normal. The Yaw values are also extremely close to
0 (North) throughout the run, with small acceptable fluctuations 0.5 degrees. It is still
important to note, the mount still allowed some sway around the z axis, causing some
fluctuations and noise in Yaw heading readings in a few runs over time. Furthermore, the
magnetic influences by being directly next to the Jetson could amplify the accumulation
of error.

The ideal mount would keep the IMU secure in the x,y plane, not apply uneven
pressure, not allow for any sway or movement, and be furthest from magnetic influences
such as the Jetson, motors, and VESC. With the help of the TAs, a mount was designed to
meet these needs for the 1/5 robot. This mount will ensure the IMU is evenly secured and
will be placed away from other magnetized hardware. We believe this mount will allow
us to provide the most accurate and reliable IMU data, and will be integrating/testing
soon. Testing different mounting strategies allowed us to gain insight in how critical the
mount was in influencing the IMU readings and key factors to mitigate these corruptions.

Figure 34: 1/5 Car Mount

7 Kalman Filter

To fuse our Odometry and IMU sensor reading to provide a better position estimate, a
common and accepted approach from research and literature is to apply Kalman Filtering
[3]. Kalman Filters are used to obtain the best estimate of states (position in our case)
through the combination of measurements from various sensors in order to mitigate noise
[7]. The robot-localization package in ROS provides an implementation of an Extended
Kalman Filter that has popular support and can be integrated into our navigation system.

17



For implementation, the Kalman Filter requires a covariance matrix based on the known
or estimated variances in the sensors to be used. Furthermore, the Kalman Filter requires
the setting of a configuration matrix per sensor that determines which readings to input.
These readings are given in the following order of: X, Y, Z, Roll, Pitch, Yaw, X vel, Y
vel , Z vel, ang vel. Roll, ang vel. Pitch, ang vel. Yaw, accel X¨, accel Y¨, and accel
Z¨. We utilized the default settings that were recommended by the community, setting
the Odometry to input default covariance values 0.025 and readings from the pose.x and
pose.y estimates. The IMU was also set to input default covariance values 0.050 and
readings from the linear acceleration x, linear acceleration y, yaw, and yaw velocity.

Figure 35: 1/5 Car Mount

When running our half arc test of Odometry, we found that the Extended Kalman
Filter suprisingly performed slightly worse than our pure Odometry position estimate
(ignoring the error at the end due to moving the car beyond the set time interval).
This was seen as an offset in the x and y position due to initial drift. We believe this
could be due to noise apparent in the IMU linear acceleration which retains a slight
bias no matter how meticulous the calibration process due to the nature of the sensor’s
extreme sensitivity. Additionally, the lack of a global ground truth position that would
be provided by the GPS. When the GPS team fuses the sensors, their implementation
would allow them to correct for the noise with greater accuracy due to the presence of
the GPS readings. The current solution is to simply disregard the linear accleration in
the EKF as they result in high accumulation of drift error and solely utilizing the IMU
for the Yaw and Yaw velocity inputs into the EKF. Further work is to explore options in
compensating for this noise and potentially the use of multiple IMUs to mitigate these
errors stemming from slight bias in the readings.

8 IMU Signal Noise Reduction Strategies

In order to further compensate and mitigate the noise in the IMU readings to provide
more accurate data, we utilized a few signal processing techniques. Through our research,
we found that popular approaches for handling noise in a signal were by employing
frequency filters to the data. One such filter is the Low Pass Filter, which reduces high
frequency noise in a signal by attenuating frequencies above a certain cutoff frequency.
We implemented a Low Pass Filter in Python at a cutoff frequency of 75 Hz.

18



Figure 36: Low-Pass Filter

Another such filter is the Median Filter. This filter is applied to smoothen a signal
by converting data points to the median of its neighbors across a ”sliding window” of
determined size. We then implemented a Median Filter of kernel window size of 5 data
points to convolve our signal with.

Figure 37: Median Filter

The third approach to process the noise was to use Haar Wavelets. The Haar Wavelet
system is a sequence of ”square” shaped functions that in union form an orthogonal
basis. By decomposing our signal with functions of higher levels (higher frequencies) we
can then remove the high frequency noise from the original signal and reconstruct our
smoother signal. We also implemented this in Python and set removed the final 3 levels
of the orthogonal basis as a default to attempt to reduce noise.

Figure 38: Haar Wavelets

The experiment run on the linear acceleration signal of the IMU allowed us to further
analyze the findings. Although our experiment mainly used default parameters recom-
mended by research and various community sources, we could see that the Low Pass
Filter was able to smoothen the noise to the highest degree. The Haar Wavelet decom-
position produced discrete time step approximations of the signal where the Median filter
also produced a smoother signal overall. The issue however is that we were still unable

19



to account for the slight bias in the acceleration even with these approaches. Future
work will be to further explore Allan Variance testing which can help us characterize the
noise we are receiving and the level of bias instability. Additional exploration will also
consist of methods to directly address this slight bias in with greater precision.

Figure 39: Signal Noise Reduction Strategies

9 OAK-1 Camera

To further expose ourselves and improve our skills in robotics, data science, and gain
exposure in computer vision, we were lucky enough to begin experimentation with the
new OpenCV AI Kit OAK-1 Smart Camera. This is a brand new single-camera hardware
module that boasts camera capture of 4K video data at 60 fps or H.265 encoded at 30fps
[8]. The camera is only the size of a Raspberry Pi, but allows for the potential to run
advanced neural network models for object tracking, detection, semantic segmentation,
and corner detection on the camera itself. Thus, we can utilize this camera to offload
perception computation processes from the Jetson NX and run them directly on the
OAK-1. The Goal is to mount the OAK-1 camera on the rear of our robot, similar to
the efforts of Tesla which utilize multiple cameras on their autonomus vehicles []. This
will allow our robot to gain rear perception sensing capability to complement the Intel
Realsense mounted in the front. Also, the OAK-1 only has a 70 degree field of view and
cannot provide stereo depth due to it being a monocular camera, so it would be better
suited as a rear mounted camera. During the autonomous race we hope to enter, we
want to give our robot the ability to detect fast approaching opposition racer robots on
the racetrack, cones, and lanes from the rear to enhance our decision and navigation
logic in order to win the race. This way we can potentially gain the ability to ”cut” off
opponent racers and better improve our own ideal ”racing” line to achieve faster race
times and top rankings.

To interface with the OAK-1 we began by establishing connection to the Jetson. This
proved to be more difficult than on the personal macbook pro that was previously used.
A USB-C cable was required for this (which had to be switched), and a special driver had
to be downloaded for the Ubuntu 18.04 system. Furthermore, a /etc/udev/rules.d/80-
movidius.rules file needed to add json configuration parameters found through personal

20



discussions on the Luxonis Support Discord Channel. We then were able to establish
a secure connection to the JNX. We then moved to integrate with ROS so we could
incorporate the OAK to our robot system. The ROS package provided by the Luxonis
Support team was is a recently published software that was warned to be error prone.
Thus, through another process of trial, error, debugging, and discussion we were able
to successfully launch the example MobileNet object detection neural network using
ROS. However, when attempting this process on a second JNX, we ran into opencv-
python errors that are still in the debugging phase. We then began collecting preliminary
data to identify an incoming opposition race car from the rear annotating these images
appropriately.

Figure 40: Figure 41:

Figure 42: OAK training data

Our future work will be to collect more training images of opposition robots from
a rear perspective and then train/finetune a Mobilenet Object Detection SSD model
(which already includes 70 classes) to detect these robots. To train this model, we plan
to use a Stochastic Gradient Descent training strategy with an Adam Optimizer for 200
epochs. Based on previous discussions and research, this was a good benchmark to begin
our training. Additionally, we will employ Early Stopping strategy to stop model training
at the optimal weights. If possible, we would also utilize the UCSD GPU Cluster to train
our model to greatly improve training time and performance. We hope to also extend
our work to detecting the cones, lines, and road signs to best improve our perception
ability.

10 Conclusion

As the IMU and Odometry subteam, we have achieved most of our target goals we
defined at the beginning of this report and are ready to integrate our work with the final

21



robot. We gained a strong understanding of IMU and Odometry sensing and its ability to
provide valuable data for accurate robot localization. We derived position estimates using
Odometry, along with an analysis on future work to make this estimation more accurate
and robust. By devising tests for straight and turning paths we were able to analyze our
findings and converge to an optimal parameter for the steering gain ERPM and steering
angle. We then successfully calibrated the IMU sensor and ran thorough tests to ensure
reliable measurements. Using a similar set of tests, we measured the accuracy of the
Yaw heading on a straight and turning path. This gave us insight into the strength of
the magnetic distortions which is critical to compenstate for onboard the robot. We also
investigated different IMU mounting approaches which highlighted the immense effect
the mount can have on the accuracy of the extremely sensitive IMU readings, allowing
us to better our mount for the 1/5 car. The Primary Heading estimate was derived from
not only the accelerometer and gyroscope, but also the magnetometer readings from
the Artemis IMU. This heading can now be easily consumed by a custom /yaw topic
or through default ROS messaging. We succeeded in integrating the Artemis IMU and
Odometry with ROS so that our data is easily digestable by other subteams, such as
the obstacle avoidance team, who wish to consume this data in order to enhance their
navigation models. Furthermore, the IMU and Odometry data is ready for fusion with
the GPS subteam within a Kalman Filter for future advancement of robot localization
methods. Finally, our work will ensure that we can hone the full potential of IMU and
Odometry sensors to improve the autonomous navigation of our final robot.

11 Future Direction

Next, we hope to work on integrating the IMU and Odometry work into the 1/5 scale car
and testing the new IMU mount that was designed. Calibrating, tuning, and analyzing
the data on the 1/5 car will give us insight into the unique environment our sensors will
reside in and allow us to best prepare the car for success during the autonmous vehicle
race competition at the Thunderhill track in Northern California. This will also provide
us with invaluable data to analyze in order to further improve our IMU and Odometry
processing and integration into the navigation stack.

There are several future direction which we began to explore in order to further the
accuracy of our position estimate, heading, and data readings from IMU and Odome-
try. One is to delve into addressing the inescapable slight bias in IMU data readings
post calibration due to the extreme sensitivity of the sensor. Here, we aim to further
research the application of the Kalman Filter and potentially the Unscented Kalman
Filter to enhance our estimate. We also hope to conduct future work on researching
signal processing techniques and tests to reduce the IMU noise. Allan Variance testing
provides a potential method to characterize the noise and bias instability, so wecan more
precisely process this noise. We hope to conduct this analysis and apply new strategies
for noise compensation. Another approach would be to utilize multiple IMUs aboard the
robot to better compensate for the noise in readings. This would require a higher level
of calibration and synchronization, yet can be a promising approach and is one that is
often used in industry.

We would also like to continue our most recent work on the OAK Smart Camera. To
successfully complete the training of a Mobilenet Object Detection model for rear sensing
capability, we will have to finish collecting and annotating enough training image data for
the model. Based on previous exploration, we plan to use a SGD training strategy with an
Adam Optimizer for 200 epochs. Additionally, we will employ Early Stopping strategy to
stop model training at the optimal weights. If possible, we would also utilize the UCSD
GPU Cluster to train our model to greatly improve training time and performance.
Then, we would expand to detecting the cones, lines, and road signs from the rear to
best improve our perception ability.

22



12 Acknowledgements

Overall, this project has allowed us to not only experiment, learn, and apply data science
skills to future oriented hardware systems, but also grow our skill sets vastly. We would
like to thank our mentor Jack Silberman, the TAs, and administration for giving us the
opportunity to continue safely learning about autonomous vehicles and navigation in a
hands-on manner, even during the COVID-19 pandemic. Thank you!

13 Appendix

Odometry Calibration Guide
Openlog Artemis Installation Guide
Openlog Artemis Calibration Guide

References

[1] Mordechai Ben-Ari and Francesco Mondada. “Robotic Motion and Odometry”. In:
Elements of Robotics. Cham: Springer International Publishing, 2018, pp. 63–93.
isbn: 978-3-319-62533-1. doi: 10.1007/978-3-319-62533-1_5. url: https:
//doi.org/10.1007/978-3-319-62533-1_5.

[2] M.A. Brodie, A. Walmsley, and W. Page. “The static accuracy and calibration of in-
ertial measurement units for 3D orientation”. In: Computer Methods in Biomechan-
ics and Biomedical Engineering 11.6 (2008). PMID: 18688763, pp. 641–648. doi:
10.1080/10255840802326736. eprint: https://doi.org/10.1080/10255840802326736.
url: https://doi.org/10.1080/10255840802326736.

[3] M. Brossard, A. Barrau, and S. Bonnabel. “AI-IMU Dead-Reckoning”. In: IEEE
Transactions on Intelligent Vehicles 5.4 (2020), pp. 585–595. doi: 10.1109/TIV.
2020.2980758.

[4] Martin Brossard and Silvere Bonnabel. “Learning Wheel Odometry and IMU Er-
rors for Localization”. In: 2019 International Conference on Robotics and Automa-
tion (ICRA) (2019). doi: 10.1109/icra.2019.8794237.

[5] f1tenth. f1tenth/f1tenthsystem. url: https://github.com/f1tenth/f1tenth_
system.

[6] Máté Fazekas, Péter Gáspár, and Balázs Németh. “Calibration and Improvement
of an Odometry Model with Dynamic Wheel and Lateral Dynamics Integration”.
In: Sensors 21.2 (2021), p. 337. doi: 10.3390/s21020337.

[7] Xiaoji Niu, Yibin Wu, and Jian Kuang. Wheel-INS: A Wheel-mounted MEMS
IMU-based Dead Reckoning System. 2020. arXiv: 1912.07805 [cs.RO].

[8] OpenCV AI Kit: OAK-D/1 Camera Buy and Customize. url: https://www.

arducam.com/oak-opencv-ai-kit-camera/.

[9] Sparkfun. Sparkfun Razor 9DoF IMU. url: https://www.sparkfun.com/products/
16832. (accessed: 01.09.2021).

[10] Siddhartha S. Srinivasa et al. “MuSHR: A Low-Cost, Open-Source Robotic Racecar
for Education and Research”. In: CoRR abs/1908.08031 (2019).

23

https://docs.google.com/document/d/1EvP4LG_EMkmimlh4PJyg6DotvCtI1D1W8gFbOee1dQQ/edit
https://docs.google.com/document/d/1GAnyZkPOdzLz0Ni9kR5zpYbYDJWu9s2W_Q4SC9sisp8/edit
https://docs.google.com/document/d/1LtOtrFy0e5vtvtvcNdWQFnouYwzNvTWwR0ZB8LUkS2M/edit
https://doi.org/10.1007/978-3-319-62533-1_5
https://doi.org/10.1007/978-3-319-62533-1_5
https://doi.org/10.1007/978-3-319-62533-1_5
https://doi.org/10.1080/10255840802326736
https://doi.org/10.1080/10255840802326736
https://doi.org/10.1080/10255840802326736
https://doi.org/10.1109/TIV.2020.2980758
https://doi.org/10.1109/TIV.2020.2980758
https://doi.org/10.1109/icra.2019.8794237
https://github.com/f1tenth/f1tenth_system
https://github.com/f1tenth/f1tenth_system
https://doi.org/10.3390/s21020337
https://arxiv.org/abs/1912.07805
https://www.arducam.com/oak-opencv-ai-kit-camera/
https://www.arducam.com/oak-opencv-ai-kit-camera/
https://www.sparkfun.com/products/16832
https://www.sparkfun.com/products/16832

	Goals/Purpose
	Odometry
	Introduction
	Data Gathering
	Calibrating Odometry
	ERPM Calibration
	MushR Steering Angle Calibration
	Improved Steering Angle Calibration

	Odometry Discussion/Results

	Artemis IMU
	Introduction
	Calibration
	Initial Heading within ROS

	ROS JNX Integration Workaround
	Heading Real Environment Analysis 
	Straight Line Heading Test
	Half Arc Heading Test

	IMU Mounting and Analysis
	Kalman Filter
	IMU Signal Noise Reduction Strategies
	OAK-1 Camera
	Conclusion
	Future Direction
	Acknowledgements
	Appendix

