
Classifying streaming provider inside VPN connection
using traffic flow statistics and spectral features

Molly Rowland, Jerry Qian, Raimundo Castro, Chang Yuan, Arely Vasquez
Halıcıoğlu Data Science Institute

{mhrowlan,jeq004,rac045,chy238,arv020}@ucsd.edu

March 2021

ABSTRACT

Whether to access another country's Netflix library or for
privacy, more people are using Virtual Private Networks
(VPN) to stream videos than ever before. However, many of
the different service providers offer different user
experiences that can lead to differences in the network
transmissions. In this paper we will discuss the methods in
which we made a classifying model to determine what
streaming service provider was being used over a VPN. The
streaming providers that the model identifies are Amazon
Prime, Youtube, Netflix, Youtube Live and Twitch. This is
valuable in understanding the differences in the network
patterns for the different streaming service providers.
Across all providers, our Random Forest model achieves a
96.5% accuracy in provider classification.

1. INTRODUCTION
Internet Service Providers (ISPs) strive to understand
network conditions in order to better user experience.
Currently, with more people using virtual private networks
(VPN), machine learning algorithms that provide insight
into the complex activity between the user and the VPN can
provide enormous value to ISPs. In past work with Viasat,
we have created classifiers that were successfully able to
identify streaming data from browsing data across a VPN.
Thus, now we design an algorithm that is able to take raw
network data recorded in a VPN and output a streaming
provider.

This paper proposes an algorithm known as Streaming
Provider Identifying Classifier Inside a VPN (SPICIVPN,
pronounced “Spicy VPN”) which can differentiate between
5 different streaming providers (i.e. Netflix, Youtube,
Amazon Prime, Twitch, and Youtube Live) with an
accuracy of 96.5%. The strength of SPICIVPN lies in the
thirteen features that process the raw data collected from
Network Stats [1]. Such features are fed to a Random Forest

Classifier which on average takes 10 minutes to process the
raw data and produce an output.

The first part of our paper consists of the explanation of
each feature. Next, we describe our model and
hyperparameters in detail. Finally, we present the results
obtained from SPICIVPN.

1.1 DATASET
The dataset used in this paper was collected at the
University of California, San Diego in partnership with a
Viasat, a San Diego based Communications company, and
includes packet statistics of traffic flows passing through a
VPN. Our data was collected in clips of 5 minutes, and the
dataset contains over 500 clips. Our classifier will focus on
classifying data as being from Netflix, Amazon Prime,
Youtube, Youtube Live, Twitch, or Other, which would be
an unspecified streaming service. For the sake of this
research, we have chosen to have our Other category
composed of Disney+, Discovery+, and Hulu. We chose to
use these providers as they are a strong market
segmentation of streaming providers available. We also
chose to include Video On Demand (VOD) and live data.
Live data is when the video is not prerecorded and being
sent out as it is recorded, such as Twitch and Youtube Live
to distinguish between many different streaming scenarios.
Video on demand is any video that has been prerecorded
and is being accessed off of a server. The data is collected
using network-stats [1], a python script written by Viasat
employee Charles Laubach, which outputs internet traffic
flow statistics on a per-connection, per-second basis.

For each unique connection pair observed in a given second,
the tool produces an output of packet metadata such as the
source and destination IPs, application ports, and
communication protocol, as well as traffic flow statistics
including the aggregated and individual count, size,
direction, and arrival time of contained packets. In order to
classify the different streaming service providers, additional

fine-grained labels about the streaming activity were
collected, such as the streaming service provider, video
resolution and playback speed.

 1.2 METHODS

The goal of this project is to make a machine learning (ML)
model that can classify what streaming service was being
used over a VPN. After exploring different models, we
decided to use a Random Forest Classifier utilizing
engineered features. It is important to incorporate
meaningful features to help improve the accuracy of our
model and keep variance low.

In creating the classifier, we collected network traffic data
to train and test the model. The data was collected from a
variety of different sources such as Netflix, Amazon Prime,
Youtube, Twitch, Youtube Live, Disney+, Discovery+, and
Hulu. All the data was collected at 1 times speed under
clean network conditions, meaning no other traffic was
being recorded besides the streaming capture. Each file
notes at least the streaming platform and user who collected
the data.

In creating features, we began by conducting exploratory
data analysis on the data from the different streaming
platforms. We compared the different platforms by
analyzing the differences in their packet data, spectral
analysis, and a variety of other features which we deemed
meaningful for identifying the different streaming
platforms.

An initial approach when looking at unique patterns
between the different streaming platforms was looking at
the packet sizes being transferred. When graphing the
frequency of packet sizes for each streaming provider, there
was a distinct pattern for each provider. Specifically when
analyzing the ratio of packets from different ranges to all of
the packet sizes. These ranges included [0-200] , [200-400]
and [1200+] bytes. This was the initial process that led to
the creation of three features used in the final model of
ratio of small, medium, and large packets.

2. RESULTS
When making the model, we first wanted to see the
potential differences between the different service
providers. We began by looking at the differences between

Amazon Prime, Netflix, and Youtube’s network traffic. All
of the figures in this section are plots of every file we
collected for a provider plotted together. The varying colors
indicated different recordings. In using these plots we can
see generalized patterns across the 100 recordings.

2.1 AMAZON PRIME
We began by looking at the upload and download patterns
of Amazon Prime. Some interesting finds from the data
were the surprising shelf found in the upload byte rate of the
data, and the max download byte of the data. In looking at
the graph of the download bytes of all the collected Amazon
Prime data in Figure 1, we can see that Amazon Prime
download rates can spike up to and over 8 MB, which we
found to be higher than any of the other video on demand
providers. These spikes were at the start of the videos,
which help show that Amazon Prime has larger initial
downloads rates to help get video content to start the videos.
After this large initial download, the rate drops significantly
to be around 1 MB or below.

Figure 1: Download Byte Rate of Amazon Prime

The upload bytes also had an interesting pattern. When
looking at the graph of upload bytes of all the collected
Amazon Prime data in Figure 2, we can see clearly that
there is a shelf around .06 MB. This is a consistent pattern
that can help the model identify Amazon Prime Videos.

Figure 2: Upload Byte Rate of Amazon Prime

2.2 NETFLIX
Then we repeated the same process for Netflix. We found
that both the upload and download patterns of Netflix are
very different from those of Amazon Prime. As we can see
from Figure 3, there are several spikes in the download
bytes in the beginning of the collected videos, with the
largest spikes located at sometime after the very start of the
videos, unlike the case with Amazon Prime. Also, the
general download bytes rate can go above 2MB, making the
pattern more constant than that of Amazon Prime because
the spikes are not as much larger than the bytes for the rest
of the time. This shows that Netflix is making more
constant downloads along with the videos playing and also
has some initial large downloads to get the content of the
videos.

Figure 3: Download Byte Rate of Netflix

The upload rates of Netflix looks very similar to its
download pattern, as seen in Figure 4. However, it is clearer
that the values of upload bytes are decreasing as the videos
play and there is no apparent shelf like Amazon Prime does.

This pattern is rather unique and distinct to Netflix upload
rates.

Figure 4: Upload Byte Rate of Netflix

2.3 YOUTUBE
For the download trends of Youtube, we found that there
are obvious shelves around 2.9 MB and 1.9 MB. The larger
shelf appears at earlier stages of the videos than the smaller
one. This is unique in that Youtube downloads the videos at
the most stable and consistent rate. And even though we can
see some spikes in the beginning of the videos, they are
only half large as those of Netflix and Amazon Prime, and
very close to the download rate for the rest of the time. And
unlike Netflix which has more gradual decreases of
download rate over time, Youtube has decreases that are
more noticeable because it has two apparent shelves as
mentioned before. The small spikes and stepwise decrease
over time are two important characteristics that separate
Youtube data from other providers.

Figure 5: Download Byte Rate of Youtube

The upload byte rate of Youtube, as shown in Figure 6, is
very similar to its download rate. There are no apparent

shelves in the pattern. But we can see that the rate is
decreasing in two or three approximate stages. Also, the
upload bytes can spike up beyond .30 MB, which are the
largest among the non-live video providers we investigated
and help the model distinguish Youtube videos.

Figure 6: Upload Byte Rate of Youtube

2.4 TWITCH
Section 2.4 and 2.5 look at live video streaming. When
analyzing the download rate of Twitch we found no clear
pattern in the data. In fact, most files present spikes of
varying length at different points in time. Moreover, it
appears that the majority of the data is downloaded earlier
on the streaming while maintaining a steady flow of packets
toward the end. At a first glance, one would be able to tell
apart Twitch’s live download rate versus download rate
from on demand providers.

Figure 7: Download Byte Rate of Twitch

The upload rates of Twitch shown in Figure 8 stands out for
there being data sent back only in the beginning of the

streaming. All the files we collected show a similar
behavior. In fact, at point 750 in time, the number of bytes
travelling from our machine to the Twitch’s server almost
drops to zero with no exception.

Figure 8: Upload Byte Rate of Twitch

2.5 YOUTUBE LIVE
Youtube Live is the other live streaming provider we
collected data from. From the download rate we can notice
a lower amount of megabytes being received as compared
to Twitch. In addition, as opposed to Twitch, the download
rate reveals a clearer pattern with more consistent and
regular arrival of data. Moreover, around point 800 in time
there appears to be a decrease in the download rate. Finally,
there is an outlier that spikes several times.

Figure 9: Download Byte Rate of Youtube Live

Youtube Live’s upload rate shown in Figure 10 assimilates
to Twitch’s upload rate in the fact that bytes are being
transferred back from the local machine up to a certain point
in time before coming to a stop. However, Youtube Live

presents more constituency and regularity than Twitch. In
fact, most of the files overlap with the exception of one
outlier.

Figure 10: Upload Byte Rate of Youtube Live

2.6 OTHER PROVIDERS
At last, we looked at the download and upload patterns of
Disney+, Discovery+, and Hulu, which we treated as the
‘Others’ category. We can see that the download pattern
fairly resembles the Amazon Prime download pattern such
that it also has large spikes in the beginning and then they
drop below 1 MB. However, the difference between spikes
and the constant rate periods are much larger than that of
Amazon Prime. This can make videos from ‘Others’
providers identifiable but also increase the number of
mistakes our model will make because of the similarity with
Amazon Prime. In fact, the most misclassified cases are
between ‘Others’ providers and Amazon Prime.

Figure 11: Download Byte Rate of Others

In the upload bytes pattern, we can see that there are
multiple spikes at different times throughout the graph in
Figure 12. This is potentially caused by the fact that we
used three different providers Disney+, Discovery+, and
Hulu, to make up the ‘Others’ category. Since they each
may have differences in upload rate patterns, the combined
pattern can be very unexpected when putting them together.
Nevertheless, we can also see that mostly the upload bytes
are small and they form really large height gaps with the
extreme spikes. The overall pattern is still very identifiable
as it is different than the upload patterns of the other
providers we have looked at before.

Figure 12: Upload Byte Rate of Others

2.7 CLASSIFIER
In our random forest classifier, we were able to make a
model that performed with high accuracy. We chose to
select a random forest classifier based on previous work.
Although we all made separate classifiers for classifying
streaming data versus non streaming data, we each made a
model utilizing the random forest classifier. Therefore we
chose to use it for this data as we saw that they already had
success on similar data. We utilized features such as mean
packet size, rolling delays, small and large packet ratios,
byte coefficient of variation and maximum frequency
prominence. The following features will be discussed in
order of feature ranking as determined by the Random
Forest Classifier feature importance method.

Figure 13: Feature Importances

The most significant feature in our model is the uploaded
mean packet size. This is a simple, but informative metric
that accounts for 16% of all feature importances. Our
intuition behind the strength of this feature lies in the belief
that different streaming providers would require clients to
upload packets of varying sizes. Since most streaming
services utilize internet protocols such as Transmission
Control Protocol (TCP), for every two packets received, the
client must also send in Acknowledgement packet (ACK).
Although the minimum ACK packet size is 40, each
streaming provider may have different ACK sizes, thus
leading to a feature that can discern between providers.
Similarly, mean download packet size will also vary
between providers. However, we believe that this feature
underperforms due to the fact that the client is constantly
downloading packets with a full payload during the
presence of video streaming to maintain quality and
consistency.

Next, we hypothesized that each provider would transmit
packets at different timings. To test this hypothesis, we first
developed inter-packet delay, which measures the amount
of time between the arrival of the previous packet and the
following packet. To summarize the inter-packet delay for a
given 90 second clip, we calculated the mean of the
inter-packet delay over rolling windows of 10 and 60
seconds. These features serve to examine inter-packet
arrival times in both small and large windows of the clip,
which can reveal periodic patterns in how each provider
transmits packets.

To further explore periodic patterns, we use signal
processing methods in the frequency domain. Due to the
nature of streaming, all packets should arrive at a stable
frequency. Therefore, we use Welch’s method to compute
the power spectral density (PSD) of downloaded packet
sizes. First, we resample our dataset at a consistent sample

rate of 500ms. Next, we transform PSD into amplitude
spectral density, which is defined as the square of PSD. This
allows us to examine the prevalence of unique signaling
frequencies. For example, we found that Youtube exhibits a
strong download frequency at 0.2Hz. This means that for
every 5 seconds, Youtube is transmitting a stable packet
size. To extract this information into a feature, we calculate
the maximum prominence (or magnitude of the peak) of
that frequency at 0.2Hz.

Figure 14: Prevalence of frequencies in Packet Size

Another feature is the coefficient of variation of the
uploaded bytes. The coefficient of variation is the ratio of
the standard deviation to the mean. By calculating the ratio
for each small chunk of data, we can get the variability in
regions of given datasets and find similar features to the
providers our model is trained to differentiate. The upload
bytes coefficient of variation patterns proved to be a key
feature for our model.

Next, we focused our analysis on ratios of varying packet
sizes. We used the ratio of small uploaded packets (less than
200 bytes) over the count of all uploaded packets, as well as
the ratio of large downloaded packets (greater than 1200
bytes) over the count of all uploaded packets. These features
allow us to analyze how each streaming provider utilizes
small and large packets when receiving data from the client.
Similarly, we calculated the ratio of large downloaded
packets over the count of all downloaded packets. However,
we chose to omit the ratio of small downloaded packets
over all downloaded packets as it was not a significant
feature in our model.

The next feature included in our classifier was the ratio of
small packet sizes uploaded compared to the entire number

of packets. For this particular feature, it included the
number of packets that were less than 200 bytes over the
total number of packets in a particular dataset. Similar to the
ratio of small packets, another feature incorporated in the
classifier consisted of the ratio of medium packets. This
means the number of packets that were between the range of
200 and 400 bytes per packet over the total number of
packets in a particular dataset. The final feature follows this
trend as the ratio of large packets including the number of
packets that were larger than 1200 bytes per packet over the
total number of packets in a particular dataset. These
features were all calculated over the entire 5-minute data.

3. DISCUSSIONS
The model performed well on our test data, with 96.5%
accuracy. We were able to accomplish the goal of creating a
classifier that was able to differentiate between the different
chosen service providers. However, there are limitations to
our model and its performance.

Figure 15: Precision, Recall, F1 for each provider

One of the trends we noticed with our classifier was that it
had the lowest accuracy on Amazon Prime data. When we
ran a precision, recall, F1-score and support command for
the different classes, we found that Amazon Prime had a
precision of .93, Youtube had a precision of .95, the other
category, Youtube Live, and Twitch had .97, and Netflix
had a precision of .98. For our dataset and classification
purposes, we understand that precision is more important
than recall because the cost of false positives is higher than
the cost of false negatives. Therefore, even though the
Other and Twitch Live categories have lower recall scores,
their high precision makes up for that loss. Moreover, with
the F1 score being a balance between precision and recall,
we see that our model’s success in being able to achieve at
least a 95% F1 score for all classes.

We then looked at the confusion matrix, seen in Figure 15
and could see that most of the misclassifications occurring
were predicting that Other, Youtube, or Youtube Live was
Amazon Prime. We also can see from the confusion matrix
that there were a few data segments incorrectly identified as
Youtube. As the other class had the most misclassifications
for Prime, it is possible that the other data looked like the
Prime data. This could potentially lower model accuracy, if
the providers in the other category became classes in the
model.

Figure 16: Confusion Matrix without Normalization

Figure 17: Normalized Confusion Matrix

Another limitation is our model was trained on clean, one
time speed data, which could affect the model performance.
To deploy this model for more usage cases, we would need
to test it on data recorded in more conditions, such as noisy
conditions, different playback speeds, and different
resolutions. While it is easier to control the playback speed
and noise levels during the recording, only a couple of
providers allow for manual selection of resolution, so we
allowed each program to select resolution based on the
internet speed. Training the model on more data that
covered these features would create a more robust model.

As more streaming provider platforms get released, which
seems to be an increasing trend, data could be collected and
used to train and test the model. Understanding the
intricacies of the different streaming providers network
patterns would be beneficial for ISPs to understand how to
best deliver the content.

Another thing to consider in creating this model are the
ethical implications. While our project is being used in an
educational capacity, there are ethical implications to
tracking individuals data use, especially when they are
using a VPN. Although people may use VPNs to have
secure connections, some positive ways to use this as an ISP
would be to help based network configurations on streaming
data. On the other hand, this could also allow for ISPs to
learn what streaming providers their clients are using, which
could be considered a breach in privacy. Even though this
project could pose some ethical implications, we think
understanding the network conditions that could optimize
streaming for clients over a VPN is beneficial for their
streaming experience.

In conclusion, there are several key takeaways from this
project. First, we are able to achieve overall high accuracy
in our model and other metrics like precision and F1-score
are also high. Second, the high accuracy we get is a result
from the features we used. We eventually decided to keep
13 features because each one contributes to making the
model perform better by capturing the various differences
between different providers. Also, they help increase the
generalizability of our model such that the classification is
not merely dependent on some features fitted exactly to the
streaming providers which we have in our training data. To
prove that, we added Twitch live and Youtube live to the
scope of classification. Initially we had started off with just
Netflix, Youtube and Amazon Prime and had an accuracy
of 97%. Since our model works well on them too, we can
see that the features are very generalizable as they even
have good performance on live data. At last, taking the
limitations of this project into consideration and trying to
use this project as a basis for a working tool can be helpful
for ISPs like Viasat to know their performances and
improve their services.

4. REFERENCES

[1] Charles Laubach (2020) “network-stats”, GitHub
repository.
https://github.com/Viasat/network-stats

5. APPENDIX

Appendix A. Feature Calculations
1. Smoothed Mean Rolling delay 10 Seconds

a. Mean of inter-packet delay (difference in
arrival time of previous and next packet)
over rolling windows of 10 seconds

2. Upload Byte coefficient of variation
a. The Upload Byte coefficient of variation

is the ratio of the standard deviation to the
mean, 𝛔/𝝻, of the uploaded byte rates

3. Mean Upload Packet Size
a. The mean upload packet size is calculated

by taking the sum of the upload packet
size over the total amount of packets to
get the average packet size.

4. Smoothed Mean Rolling delay 60 Seconds
a. Mean of inter-packet delay (difference in

arrival time of previous and next packet)
over rolling windows of 60 seconds

5. Received Small Proportion
a. Ratio of small downloaded packets (<200

bytes) over all downloaded packets
6. Received Large Proportion

a. Ratio of large downloaded packets (>1200
bytes) over all downloaded packets

7. Downloaded Mean Size
a. Mean packet size of all downloaded

packets
8. Large Packet Ratios

a. The ratio of the count of uploaded packet
sizes in the size range of 1200+ bytes and
the overall total number of packets. This
feature is calculated over the entire
dataset collected.

9. Sent Small Proportion
a. Ratio of small uploaded packets (<200

bytes) over all uploaded packets
10. Max Frequency Prominence

a. Using Welch’s method to compute the
power spectral density of downloaded
packets, transformed into amplitude
spectral density, then calculating the

https://github.com/Viasat/network-stats

magnitude of the peak (in bytes) at the
most prominent frequency (Hz)

11. Small Packet Ratios
a. The ratio of the count of uploaded packet

sizes in the size range of 0-200 bytes and
the overall total number of packets. This
feature is calculated over the entire
dataset collected.

12. Download Byte Coefficient of Variation
a. The Download Byte coefficient of

variation is the ratio of the standard
deviation to the mean, 𝛔/𝝻, of the
downloaded byte rates

13. Medium Packet Ratio
a. The ratio of the count of uploaded packet

sizes in the size range of 200-400 bytes
and the overall total number of packets.
This feature is calculated over the entire
dataset collected.

Appendix B. Definitions

● Virtual Private Network (VPN): creates a private
network across a public network

● Packet: formatted unit of data carrying
information on where to send data and the payload
of data

● Byte: data contained in the packet, group of 8 bits
● Live video: video that is being created and

streamed at the same time
● Video on Demand: video that is created and

stored on a server accessible at a later time
● Uploaded Data: any data uploaded by the

computer to the server either requesting
information or sending an acknowledgement of
receiving data

● Downloaded Data: any data received by the
computer from the server

● Power spectral density: describes the
distribution of power into frequency components

composing that signal. It is the measure of
signal's power content versus frequency.

Appendix C. Project Proposal
Throughout this past quarter, we have worked with Viasat
to build classifiers that are able to identify if there is video
being streaming in a VPN. Using flow level data, packet
level data, and self-engineered features, we have built an
understanding of video patterns and signatures over a VPN.
However, our current model only identifies whether a VPN
user is streaming video. As an extension to our Q1 progress,
this project will take a further look at classifying the
streaming provider a user is using while connected to a
VPN. This includes differentiating whether a streaming
video is from Youtube, Netflix, Amazon Prime or others. If
our classifier is successful, ISPs like Viasat can detect the
presence of streaming and determine the streaming
providers and use that information to optimize internet plans
for certain streaming services.

As in quarter 1, we would be generating our own data using
the network-stats tool provided to us by Viasat. In order to
collect an abundant amount of data for our models to be
trained accurately, we will use network-stats in conjunction
with scripted and automated browsers to capture streaming
data on various providers. For this quarter, we will be
collecting VPN encrypted data and will vary the collection
process on streaming providers. Similar to Q1, this data is
capable of addressing our problem as it contains data on
each flow and packet, including client and server IPs and
ports, packet size, time and direction. It will go through
similar cleaning and preprocessing steps, as well as build on
top of the binary classifier from the previous quarter since
we need to ensure there is video streaming present in the
network data.

While there are trends across the different video service
providers, each has different networking requirements as to
optimize the experience for the user. At our brainstorming
stage, we are considering using payload sizes and packet
transfer patterns as features for our model to distinguish
between providers. We hypothesize that Amazon Prime and
Youtube, for example, may send packets with different
sizes, interpacket delays, or size of packet clusters. Another
potential feature would be buffering patterns for various
providers. For example, the time-series visualization of
downloaded bytes shows that Amazon Prime will buffer
slowly at the start of the video, but keep the stream
consistent and clear throughout the video to create an

immersive experience. On the other hand, Youtube will
buffer fast at the beginning so that users may start watching
their video sooner, but may continue to buffer or even slow
down their buffering later into the video. This can transform
into a feature by looking at packet patterns right when we
begin the video stream.

As a stretch goal, we also wish to determine whether the
streaming provider is sending the video at their maximum
possible resolution. We would also like to add more
functionality to the classifier by training it to classify more

providers, such as Hulu, HBOMax, etc. Our project will be
summarized in a paper explaining our findings of our
machine learning model. In our paper, we will include our
data collection process, EDA and feature engineering
process, model selection, fine-tuning, and outputs to best
communicate our findings. In addition, the model will be
the main output since it will be able to run any
network-stats data and classify the presence of streaming as
well as the streaming provider.

Something to consider in doing this project are the ethical
implications. While from an academic perspective, it is
interesting to be able to understand these trends, there is
concern that creating a classifier to know what streaming
service you are using within a VPN could be considered an
invasion of privacy. Although we are working with Viasat
to understand these mechanisms, we do not intend for our
classifier to be used on real client data, solely our
educational dataset.

